Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Katrina Storm Surge Led to Over 200 Onshore Releases of Petroleum and Hazardous Materials, Rivaling Exxon Valdez Oil Spill

22.04.2010
Scientists call for more risk-based facility design and improved prevention, response planning.

Hurricane Katrina was the cause of more than 200 onshore releases of petroleum and other hazardous materials, a new study funded by the National Science Foundation has found.

According to comprehensive research using government incident databases, about 8 million gallons of petroleum releases were reported as a result of Katrina hitting the U.S. Gulf coast in 2005, nearly 75 percent of the total volume of the 1989 Exxon Valdez oil spill in Alaska. The releases were largely due to storage tank failure and the shut down and restart of production processes. Storm surge floods were the primary cause, but some incidents occurred as a result of hurricane and tropical storm strength winds where no surge was present, according to the authors.

The study “Petroleum and Hazardous Material Releases from Industrial Facilities Associated with Hurricane Katrina” appears in the April issue of the journal Risk Analysis published by the Society for Risk Analysis.

The authors include consultant Nicholas Santella, Laura Steinberg of Syracuse University, and Hatice Sengul of the Turkish Scientific and Technological Research Council. Ten onshore releases of petroleum products were greater than 10,000 gallons each, primarily made up of crude oil that leaked from storage tanks. Fewer and smaller releases were reported from chemical and manufacturing industries handling hazardous materials. Of the releases from onshore facilities and storage tanks, 76 percent were petroleum, 18 percent were chemicals and six percent were natural gas. Many refineries and other facilities shut down in anticipation of large storms to minimize damage and prevent process upsets and are required to do so for safety purposes. However, shutdowns and restarts have the disadvantage of leading to potentially large emissions of volatile organic compounds, particulate matter, and other chemicals.

“More attention should be given to planning for shutdowns, including coordination with government entities responsible for evacuation, and to plant startup after an emergency shutdown in order to minimize burning off excess gas by flaring and other releases,” according to the authors. For example, storage tanks can be filled with water and other steps can be taken to mitigate damage during severe storms and floods.

“Where large releases do occur, in-depth analysis by each plant of mechanism of failure and contributing factors should be required,” the authors add. Significant factors slowing response to the Katrina damage included indirect disruptions, such as displacement of workers, loss of electricity and communication systems, and difficulty acquiring supplies and contractors for operations and reconstruction. Of industrial facilities responding to a survey in the study, 55 percent experienced indirect disruptions, far more than had environmental releases of hazardous materials, indicating improved risk-based facility design and improved prevention and response planning may be warranted.

“Chemical accident prevention and emergency response regulations in the US and elsewhere generally do not address the threat of natural hazards directly. While many companies are proactive in taking steps to mitigate natural hazard risk, others may make only the minimum effort require by statute,” the authors conclude. The study is the first to comprehensively analyze the incidence and causes of releases from all types of onshore industrial facilities as a result of Hurricane Katrina. The analysis relies on the key incident reporting databases of the National Response Center (NRC) Incident Reporting Information System (IRIS) administered by the U.S. Coast Guard. In addition, interviews and data were obtained from federal and Gulf state environmental agencies, energy and chemical associations, public accounts of particular incidents, and a small industry survey.

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is broadly defined to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level.

Note to editors: The complete study is available upon request from Lisa Pellegrin/Steve Gibb or here: http://www3.interscience.wiley.com/cgi-bin/fulltext/123322882/HTMLSTART

Steve Gibb | Newswise Science News
Further information:
http://www.sra.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>