Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Joins Study of Oil Spill Impact on Florida Ecosystem

21.07.2010
Johns Hopkins researchers are part of a multi-institution team formed to determine how the Deepwater Horizon Gulf of Mexico oil spill affects a sensitive aquatic environment off the coast of Florida.

Team members have begun collecting samples of water, sediment, marine animals and plant life in the Sarasota Bay region, which has not yet been impacted by the massive oil spill. As the oil spreads, however, it may enter the Sarasota Bay ecosystem. The baseline data being collected is expected to give the researchers a way to measure any changes to the aquatic environment if oil does move into the region.

The research effort is being led by the National Aquarium, in collaboration with the Sarasota-based Mote Marine Laboratory and The Johns Hopkins University’s Center for Contaminant Transport, Fate and Remediation. This center, directed by Edward Bouwer, chair of the Department of Geography and Environmental Engineering in Johns Hopkins’ Whiting School of Engineering, includes researchers from the Whiting School and the Johns Hopkins Bloomberg School of Public Health.

The center’s role will be to use data gathered in Sarasota Bay to develop mathematical models to shed light on how contaminants in oil move through the food chain and accumulate in marine plant and animal tissues. These models also may help determine how humans could be affected by contaminated seafood.

“This study is allowing us to be proactive by conducting a before-and-after comparison of the sediment, water and biota in the Sarasota Bay to more accurately determine the lasting ecological effects from the oil spill,” Bouwer said. “The data analysis and model development will give us a predictive tool to assess the impact of the oil at other locations.”

The research project is being funded primarily by the National Aquarium Institute, with additional support from Johns Hopkins.

Related links:
Johns Hopkins Department of Geography and Environmental Engineering:
http://engineering.jhu.edu/~dogee/
National Aquarium: http://www.aqua.org

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>