Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Japanese Radiation: Atmospheric Transport and Removal

What happens to radioactive particles and gases released from Japan’s crippled nuclear power plants is even more difficult to predict than the weather, and will depend on several key factors, explain University of Maryland atmospheric scientists.

Factors determining the distribution of hazardous material include:

• Altitude to which radioactive or toxic materials are lofted
• Day-to-day variability in forecast winds
• Amount and nature of materials emitted
• Removal and dilution of radioactive materials (by dispersion, wash-out by rain, or contact with the ocean, for example)

Worldwide, scientists are using publicly accessible meteorological tools to track how released radiation might be transported through the atmosphere. At the University of Maryland, atmospheric science researchers Tim Canty, Jeff Stehr, Russell Dickerson and Ross Salawitch have examined atmospheric patterns this week using the National Oceanic and Atmospheric Administration (NOAA) HYSPLIT model. NOAA has not reviewed the results and these model calculations do not consider the decay of radioactive compounds.

“Projected air mass patterns vary dramatically from day to day, and it’s these changing conditions that control the dispersal of radiation,” says Tim Canty.


This trajectory figure shows projections of air parcels originating over the Fukushima nuclear plant on March 14, 15, 16, and 17. The figure legend indicates when parcels are expected to reach North America.

Though these are simplified models of atmospheric transport, the Maryland scientists say they provide reasonable pictures of the long-range movement of potentially hazardous materials, and also provide guidance on which variables need to be monitored.

Note: The figures in this release will be updated daily at


Plume height: The altitude where rapid, local upward motion of the escaped radiation ceases. When upward motion ceases, horizontal winds take over. “This is a critical factor, says Ross Salawitch. “Plume height cannot be estimated in a reliable manner and must be directly measured. In lieu of such measurements, we have treated plume height as an adjustable parameter.” The legend on the right side of the trajectory figure indicates plume height in units of kilometer (1 km = 3281 feet).

“In general, the higher the radioactive plume, the farther and faster it will travel,” explains Jeff Stehr. “The ground-hugging winds tend to keep radiation localized. At higher levels, winds tend to move on a fast track that can transport material longer distances.”

Track Uncertainty: Roughly speaking, the uncertainty of the location of radiation is equal to 20 percent of the distance along the track from the start point.

“We have placed error bars on the figures, at 24 hour intervals, to represent this approximate uncertainty in air parcel location,” says Canty. “This uncertainty is likely to be more realistic for the first few days for parcels that are lofted and not particularly meaningful 7 days out.”

When simulations are repeated using daily updates to the meteorological fields, for the same specified initial conditions, track positions vary. “Generally the further along the trajectory, the more variability we see, because wind patterns are inherently better known a day or two from now than a week from now,” says Salawitch. Wind fields used by HYSPLIT are updated as atmospheric measurements are obtained.


As yet, only limited information is available on the nature and magnitude of emissions. Japanese and American monitors are in the area. Large smoke or dust particles will settle out locally; gases and small particles will not. The longest lived materials, and thus the most likely to have a large-scale impact, are particles between 0.1 and 1.0 micrometers (10-7 and 10-6 meter) in diameter. Such aerosols, characteristic of atmospheric pollution or haze, generally remain airborne until removed by precipitation. The half-life with respect to radioactive decay varies broadly as well. In Chernobyl, the main radionuclides included iodine 131 with a half-life of 8 days and cesium 137 with a half-life of 30 years.


Long-lived radionuclides (radioactive material) are removed from the atmosphere by precipitation or contact with a surface such as the ocean or land. The HYSPLIT model estimates precipitation along the projected tracks. The bottom panel of the trajectory figure shows the altitude of the tracks, with dotted lines representing encounters with precipitation.

“Precipitation is expected to be an important pathway for removal of radiation” says Canty. “Without knowing the chemical composition of the material being released, it is difficult to quantitatively estimate the efficiency of radionuclide removal by precipitation. However, we know rain efficiently removed radionuclides released by the Chernobyl accident.”

Health hazards are commonly quantified in terms of particulate and gaseous concentrations, represented as mass per volume of air. Background air continuously mixes with polluted air, causing steep drops in concentration as radiation is transported away from a localized source. “Radioactive material will dissipate just as smoke from fireworks spreads in the sky,” says Stehr.


The University of Maryland team has used HYSPLIT to produce an animated dissipation figure. The contours show atmospheric concentrations resulting from the release of one unit “mass” of material over Fukushima, between 0 and 2 km altitude on 15 March 2011. Removal processes due to rain and contact with surfaces are not considered; the modeled concentrations decline solely due to atmospheric mixing. The model stops reporting values of concentration when levels fall below a threshold of 10−17 mass per cubic meter or when air parcels cross the 159ºE longitude line. “This image allows scientists to relate projected atmospheric concentrations to the amount of material released”, says Stehr. “For instance, if a ton of material were to be released, the light blue color indicates where atmospheric concentrations of 0.01 nanogram per cubic meter of material would result (1 metric ton = 1000 kg; 1000 kg × 10−17 meter−3 = 0.01× 10−9 g meter−3, the same as 0.01 nanogram per cubic meter).”

The rapid vertical motion associated with convection, which generally occurs in low pressure weather systems, is another process that leads to a decline in radiation concentration levels. When air parcels encounter convection, radiation will be distributed throughout the height range of the strong vertical winds, causing further drops in concentration. “The notion that radiation will remain at one altitude is a misnomer that would apply only to tracks that transit the Pacific without encountering convection,” says Salawitch.


The level of radiation reaching North America depends on many factors, including the type of radioactive material released, whether it is in the gaseous or particulate form, the height of the radioactive plume, overall weather patterns, and precipitation and dilution as the material crosses the Pacific.

Prevailing winds show that plumes originating over Fukushima generally take at least 5 to 7 days to reach North America. The majority of the radiation, upon reaching North America, would be expected to reside at an altitude well above the surface and below where commercial airplanes fly at cruising altitude. Significant amounts of radiation will be removed by precipitation or contact with the ocean. Otherwise, radiation concentration levels will be reduced many orders of magnitude by atmospheric mixing.

“Calculations such as those in the dissipation figure are the basis for statements by many scientists that radiation will be diluted, to levels below thresholds of concern for human health, by the time these air masses reach the North America”, says Russell Dickerson. “If there is widespread public concern, airborne measurements of atmospheric radionuclides using small commercial available gamma ray spectrometers, at projected locations of plumes, could be used to verify that the public health risk is minimal”.

Satellite imagery provides visual evidence of Asian dust storms, originating from the Gobi desert, crossing the Pacific and depositing material in North America. Transport of this material occurs on what is called the warm conveyor belt, a wedge of warm air that is lofted to very high altitude (above 5 km) and rides across the Pacific over a region of cold air. While precipitation is generally associated with the initial lofting of warm conveyor belt air masses, there are times when such lofting occurs with little rainfall (i.e., when the underlying air is especially dry, such as over the Gobi desert). In this case, lofted material travels at high altitude and deposits where it next encounters rain. “Entrainment of the Fukushima plume in a warm, conveyor belt circulation that is too dry to precipitate perhaps poses the largest risk of widespread dispersal of the emitted material. While this is unlikely, it should be monitored,” says Salawitch.


“It’s an active time of year in the region – storm systems regularly push off the coast of East Asia,” Stehr says. “This means that Japan is unlikely to have extended periods of stagnation that could trap radiation and increase exposures. Generally, prevailing winds disburse pollution away from Japan. On some days, however, weather patterns tend to re-circulate air from Japan over the ocean and back toward the Japanese coast. Obviously, this issue is being closely monitored by Japanese authorities.”


Jeffrey Stehr
UMD Atmospheric Research Scientist
301-405-7638 (office)
240-354-1372 (cell)
Tim Canty
UMD Atmospheric Research Scientist
Ross Salawitch
UMD Professor of Atmospheric Chemistry
Russell Dickerson
UMD Professor of Atmospheric Chemistry
This team specializes in the quantification of human activity on atmospheric composition.

The figures in this release will be updated daily at

Jeffrey Stehr | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

More VideoLinks >>>