Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible invasive species

08.12.2010
While Asian carp, gypsy moths and zebra mussels hog invasive-species headlines, many invisible invaders are altering ecosystems and flourishing outside of the limelight.

A study by Elena Litchman, Michigan State University associate professor of ecology, sheds light on why invasive microbial invaders shouldn't be overlooked or underestimated.

"Invasive microbes have many of the same traits as their larger, 'macro' counterparts and have the potential to significantly impact terrestrial and aquatic ecosystems," said Litchman, whose research appears in the December issue of Ecology Letters. "Global change can exacerbate microbial invasions, so they will likely increase in the future."

The public and scientists seem to be well-informed of the spread of Asian carp, zebra mussels and gypsy moths -- all invasive macroorganisms. But what about exotic cyanobacteria, also called "blue-green algae," which have found their way into North American and European lakes? Or a nitrogen-fixing rhizobium, a soil microorganism that has emigrated from Australia to Portugal?

In the Great Lakes, a brackish diatom (a microscopic alga), has colonized Lake Michigan probably via ballast-water discharge and is now the largest diatom in the waterways. How will it change the ecosystem? What changes has it caused already?

While many people have a working knowledge of the American chestnut blight, which was caused by a pathogenic parasitic fungus, most invasive microbes fly beneath the radar of the public and scientists alike. Virtually nothing has been published on the potential of nonpathogenic microbes on a large scale, according to Litchman.

"From scientific research, we know that the chestnut blight dramatically altered forests and how the spread of West Nile virus is associated with significant bird die-offs," she said. "Currently, there are no published examples of the impacts of invasive nonpathogenic microbes, but there is growing evidence that they could change ecosystems in equally dramatic fashion."

The lack of attention to microbial invasions compared to macroorganisms is due, in part, to their cryptic nature and the difficulty of detection. Lack of detection combined with climate change could potentially increase these microbial invasions, which could continue to grow as the earth's weather patterns change, Litchman said.

"Increasing air temperatures have been implicated in the spread of malaria and other pathogenic microbes into higher altitudes and latitudes," she said. "Likewise, climate change could stimulate invasions by tropical and subtropical nonpathogenic microbes into temperate latitudes."

Litchman's research is funded in part by the National Science Foundation.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

For MSU news on the Web, go to news.msu.edu. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>