Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive species on the march: variable rates of spread set current limits to predictability

22.09.2009
Unknowns may place more species at risk in a changing climate

Whether for introduced muskrats in Europe or oak trees in the United Kingdom, zebra mussels in United States lakes or agricultural pests around the world, scientists have tried to find new ways of controlling invasive species by learning how these animals and plants take over in new environs.

In a paper published in this week's issue of the journal Science, biologists Brett Melbourne of the University of Colorado and Alan Hastings of the University of California at Davis report a previously unknown high variability in the rates of invasive species spread.

To reach their conclusions, they studied red flour beetles--beetles attracted to wheat flour--in experimental, enclosed landscapes with patches of habitat linked together.

They collected data from 30 landscapes composed of identical patches of land, all maintained under the same conditions, each initially home to 20 red flour beetles.

Although the landscapes were identical, there were considerable differences in how the beetles spread. By the end of the 13-beetle-generation experiment, the distance the beetles ranged spanned 10 to 31 "landscape patches."

"Scientists have struggled to understand why some species spread rapidly, while others don't," says Saran Twombly, acting deputy division director of the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research. "Once ecologists identified the key factors, it was thought, they could predict species spread with some certainty.

"Melbourne and Hastings have showed the opposite: intrinsic variability that could be random or have a genetic basis appears to have a large influence on species' spread. Researchers must now incorporate uncertainty in future approaches to 'ecological forecasting.'"

Everyone's familiar with uncertainty in weather forecasts, says Melbourne. "How often have we heard, 'there is a 75 percent chance of rain today?'"

As in weather systems, there's a degree of unpredictability in ecological systems.

The uncertainty arises because of randomness in both environmental and biological processes. "Ecologists have rarely measured it, however, so we haven't known how big it is," states Melbourne.

"We need to know more about how this affects the specific case of biological invasions," says Melbourne, "and how it changes ecosystem responses generally."

Ecologists will increasingly be called on to make the biological equivalent of weather forecasts: how will ecological systems respond to climate change, habitat destruction and loss of biodiversity?

Will species be able to migrate fast enough to keep pace with climate change?

Although more research is needed, the uncertainty Melbourne and Hastings found may place more species at risk in a changing climate: flora and fauna may not be able to march one step ahead of the pace of global warming.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>