Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive species on the march: variable rates of spread set current limits to predictability

22.09.2009
Unknowns may place more species at risk in a changing climate

Whether for introduced muskrats in Europe or oak trees in the United Kingdom, zebra mussels in United States lakes or agricultural pests around the world, scientists have tried to find new ways of controlling invasive species by learning how these animals and plants take over in new environs.

In a paper published in this week's issue of the journal Science, biologists Brett Melbourne of the University of Colorado and Alan Hastings of the University of California at Davis report a previously unknown high variability in the rates of invasive species spread.

To reach their conclusions, they studied red flour beetles--beetles attracted to wheat flour--in experimental, enclosed landscapes with patches of habitat linked together.

They collected data from 30 landscapes composed of identical patches of land, all maintained under the same conditions, each initially home to 20 red flour beetles.

Although the landscapes were identical, there were considerable differences in how the beetles spread. By the end of the 13-beetle-generation experiment, the distance the beetles ranged spanned 10 to 31 "landscape patches."

"Scientists have struggled to understand why some species spread rapidly, while others don't," says Saran Twombly, acting deputy division director of the National Science Foundation (NSF)'s Division of Environmental Biology, which funded the research. "Once ecologists identified the key factors, it was thought, they could predict species spread with some certainty.

"Melbourne and Hastings have showed the opposite: intrinsic variability that could be random or have a genetic basis appears to have a large influence on species' spread. Researchers must now incorporate uncertainty in future approaches to 'ecological forecasting.'"

Everyone's familiar with uncertainty in weather forecasts, says Melbourne. "How often have we heard, 'there is a 75 percent chance of rain today?'"

As in weather systems, there's a degree of unpredictability in ecological systems.

The uncertainty arises because of randomness in both environmental and biological processes. "Ecologists have rarely measured it, however, so we haven't known how big it is," states Melbourne.

"We need to know more about how this affects the specific case of biological invasions," says Melbourne, "and how it changes ecosystem responses generally."

Ecologists will increasingly be called on to make the biological equivalent of weather forecasts: how will ecological systems respond to climate change, habitat destruction and loss of biodiversity?

Will species be able to migrate fast enough to keep pace with climate change?

Although more research is needed, the uncertainty Melbourne and Hastings found may place more species at risk in a changing climate: flora and fauna may not be able to march one step ahead of the pace of global warming.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>