Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive fish and mussels team up to transfer toxic substances into Great Lakes walleyes

12.04.2010
Two notorious Great Lakes invaders—the zebra mussel and the round goby—now play a central role in transferring toxic chemicals called PCBs up the food chain and into Saginaw Bay walleyes, one of that region's most popular sport fish.
The links between zebra mussels, round gobies and contaminated Saginaw Bay walleyes is a disturbing example of unanticipated problems that can occur when non-native species get loose in the Great Lakes, said University of Michigan fishery biologist David Jude, lead author of a paper on the topic published online today in the Journal of Great Lakes Research.

Walleye illustration. Courtesy Michigan Sea Grant.
"This zebra mussel-to-goby link in Great Lakes contaminated areas is one of the main conduits of PCB transfer to top aquatic predators such as the walleye, and it plays a substantial role in PCB transfer to birds, mammals and reptiles in the region as well," said Jude, a research scientist at the U-M School of Natural Resources and Environment.

Between 2005 and 2007, Jude's team collected walleyes, round gobies and various other fish species, as well as zebra mussels and zooplankton, in the Tittabawassee River, the Saginaw River and Lake Huron's Saginaw Bay. Then they measured levels of PCBs in all those organisms—the first such study in the Saginaw Bay region.

"Though the levels of PCBs in Saginaw Bay walleyes have declined sharply in recent years, these toxic substances continue to show up at levels high enough to warrant concern," Jude said.

The highest levels were seen in the largest walleyes, which contained an average of 1,900 nanograms of PCBs per gram—just under the 2,000 nanogram Environmental Protection Agency threshold for mandatory fish-consumption advisories. A nanogram is a billionth of a gram.

Polychlorinated biphenyls, or PCBs, are manmade chemicals that were once used in hundreds of industrial and commercial applications. But the manufacture of PCBs was banned in the United States in 1979, and EPA now classifies the chemicals as probable human carcinogens.

Beginning in the 1940s, factories, chemical manufacturers and municipal wastewater treatment plants discharged PCBs into the Saginaw River; many of the PCBs settled into river-bottom sediments. The contamination led to advisories against human consumption of selected species and sizes of fish from the Saginaw River, as well as many species of fish in the Bay.

In 2000-01, the mouth of the Saginaw River was dredged to remove accumulated sediments contaminated with PCBs, metals and various hazardous compounds. Since then, the level of PCBs has dropped precipitously in Saginaw Bay walleyes.

In addition to the U-M scientists, Jude's team includes researchers from Grand Valley State University and the University of Saskatchewan. The team compared its results to the findings of a similar study conducted in the same area in 1990, prior to the dredging project.

Jude's team found that the average concentration of PCBs in Saginaw River walleyes dropped 65 percent between 1990 and 2007, a result that is consistent with previous studies that also showed significant declines. Much of the change can likely be attributed to the dredging project, though changes in the food web and other factors may also have played a role, Jude said.

The walleye is the top predator in the Saginaw Bay ecosystem, and the bay's world-class walleye fishery is a key part of the $7 billion-a-year Great Lakes fishery.

Twenty years ago, Saginaw Bay walleyes fed mainly on alewives, another non-native fish species. But alewives have been nearly eliminated from Lake Huron, a decline blamed largely on predation by salmon and the proliferation of invasive zebra and quagga mussels, which have depleted two of the alewives' main food sources.

As alewives declined, the zebra mussel/round goby/walleye link enabled substantial amounts of PCBs to continue moving up the food chain and into Saginaw Bay walleyes.

Walleyes prey on round gobies, which in turn gorge on bottom-dwelling zebra mussels that suck up massive amounts of lake water. Each fingernail-size zebra mussel filters up to a liter of water a day—taking in any toxic substances present in the water. Some of those contaminants are incorporated into the mussels' tissues and shells, and round gobies eat the little mollusks shell and all.

"Zebra mussels can accumulate relatively high concentrations of PCBs, which can then be transferred to round gobies and eventually to walleyes," Jude said.

The Saginaw Bay/Saginaw River region is designated an International Joint Commission Area of Concern, due to contamination of sediments with persistent inorganic and organic pollutants. It is one of 14 Areas of Concern in Michigan.

Authors of the Journal of Great Lakes Research paper are Jude and Stephen Hensler of the University of Michigan, Richard Rediske and Jim O'Keefe of Grand Valley State University, and John Giesy of the University of Saskatchewan.

Support for the study was provided by the U-M School of Natural Resources and Environment and the U-M Office of the Vice President for Research.

Contact: Jim Erickson
Phone: (734) 647-1842

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>