Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into helping marine species cope with climate change

22.02.2010
Move, adapt or die. Those are the options marine plants and animals have in the face of climate change, said Stanford biologist Steve Palumbi, who has been exploring how to help them go with the first two options, rather than the third. He's come up with some surprising answers.

Palumbi will be discussing the results of his research in two talks at the annual meeting of the American Association for the Advancement of Science in San Diego.

How to design marine protected areas to best benefit a wide variety of plant and animal species is the focus of a talk he'll give on Saturday, Feb. 20. The most practical kind of natural reserve is one that benefits species and local human populations, but Palumbi said striking that balance isn't always easy. Many people have argued that bigger is better when it comes to marine reserves, but Palumbi has data suggesting that is not always the case.

In a separate Topical Lecture he'll give on Sunday, Feb. 21, Palumbi will present his findings on how marine species are reacting to climate change, including new work on coral species in the Pacific that have poor powers of dispersal but a surprising ability to cope with higher temperatures.

Palumbi is director of Stanford's Hopkins Marine Station and a senior fellow at the university's Woods Institute for the Environment.

If you can't move, then you'd better adjust

Many species, such as those along the west coast of California, can simply migrate north to colder waters. But other animals, such as the coral that Palumbi's team has studied in Fiji and American Samoa, won't be moving anytime soon.

"Each coral population is trapped on its own island, and as global climate changes around them, the populations are essentially stuck where they are. They have to go to the second stage, which is to adapt," Palumbi said.

Marine scientists have predicted that coral reefs will be at risk of extinction due to high ocean temperatures caused by climate change, but Palumbi has found a species of coral that may have a better chance of adapting.

Palumbi's team studied corals growing in shallow lagoons that face intense heat during noontime summer low tides. The team knew these corals were resistant to brief heating but were surprised to find that the corals survived five to six days of high water temperatures. Baking in the tropical summer sun at low tide for 4 to 6 hours a day seems to have better prepared these corals for global warming temperatures.

"When we tested these corals against high temperatures for extended periods of time, they showed all the evidence of having higher resilience," Palumbi said. "It looks like the corals have adapted or acclimated to that stress and have a better chance of resisting high global warming temperatures." How long this resilience will last, and whether all corals can do this, are remaining questions.

Does size matter for marine reserves?

A major response to climate change is to protect reefs from other human-caused stresses such as overfishing. And as a result, a large number of Marine Protected Areas have been implemented in the Pacific. Some are the size of a football field. Some are the size of California. Is bigger better?

To determine how much difference the size of a protected area might make, Palumbi analyzed data from a set of small reserves in Fiji, from the Phoenix Islands and from the Papahanaumokuakea Reserve in Hawaii, the largest marine reserve in the world. All three areas are set aside by government agencies.

The Papahanaumokuakea Marine National Monument covers 360,000 square kilometers (139,000 square miles) in Northwest Hawaii and is a "no-take" reserve, which means nothing may be removed, including fish.

The Phoenix Islands Protected Area, which lies in the central Pacific Ocean between Hawaii and Fiji, is over 408,000 square kilometers (158,000 square miles). There are seven no-take reserves in this area, each about 39 kilometers (24 miles) across.

However, in densely populated areas, smaller reserves are more common. Fiji has 246 such protected areas, each averaging about 2 to 3 square kilometers (about a square mile).

"Small sets of marine protected areas are much more convenient: People can fish in between them or go around them easily. Species found within the marine protected areas easily spill out into the surrounding areas, potentially increasing fishing productivity," Palumbi said.

However, wide stretches of protected ocean allow species to spread more easily than small areas, where they risk being caught by fishermen between the reserves. Therefore, small reserves must be well matched to the plants and animals they are protecting because each species spreads at different rates, Palumbi said.

"Species have lots of different dispersal abilities, so it's very hard to have a marine protected area network that works equally well for all different species. You have to tailor the network of reserves to the species," he said.

Though small reserves meet the needs of fewer species than those of larger reserves, setting aside enormous areas of ocean is not that simple. Scientists and policymakers must consider local residents who depend on fisheries for their well-being.

"With heavy human populations, the political, social and economic problems of a big marine protected area are paramount and you've got to go to another strategy. But it's a strategy with limitations because it's hard to design an area perfectly for all species that need protection," Palumbi said. The most effective reserve is one that balances preservation of species with human needs, he said. Finding that balance is the challenge.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht The disappearance of common species
01.02.2018 | Technical University of Munich (TUM)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>