Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insights into helping marine species cope with climate change

Move, adapt or die. Those are the options marine plants and animals have in the face of climate change, said Stanford biologist Steve Palumbi, who has been exploring how to help them go with the first two options, rather than the third. He's come up with some surprising answers.

Palumbi will be discussing the results of his research in two talks at the annual meeting of the American Association for the Advancement of Science in San Diego.

How to design marine protected areas to best benefit a wide variety of plant and animal species is the focus of a talk he'll give on Saturday, Feb. 20. The most practical kind of natural reserve is one that benefits species and local human populations, but Palumbi said striking that balance isn't always easy. Many people have argued that bigger is better when it comes to marine reserves, but Palumbi has data suggesting that is not always the case.

In a separate Topical Lecture he'll give on Sunday, Feb. 21, Palumbi will present his findings on how marine species are reacting to climate change, including new work on coral species in the Pacific that have poor powers of dispersal but a surprising ability to cope with higher temperatures.

Palumbi is director of Stanford's Hopkins Marine Station and a senior fellow at the university's Woods Institute for the Environment.

If you can't move, then you'd better adjust

Many species, such as those along the west coast of California, can simply migrate north to colder waters. But other animals, such as the coral that Palumbi's team has studied in Fiji and American Samoa, won't be moving anytime soon.

"Each coral population is trapped on its own island, and as global climate changes around them, the populations are essentially stuck where they are. They have to go to the second stage, which is to adapt," Palumbi said.

Marine scientists have predicted that coral reefs will be at risk of extinction due to high ocean temperatures caused by climate change, but Palumbi has found a species of coral that may have a better chance of adapting.

Palumbi's team studied corals growing in shallow lagoons that face intense heat during noontime summer low tides. The team knew these corals were resistant to brief heating but were surprised to find that the corals survived five to six days of high water temperatures. Baking in the tropical summer sun at low tide for 4 to 6 hours a day seems to have better prepared these corals for global warming temperatures.

"When we tested these corals against high temperatures for extended periods of time, they showed all the evidence of having higher resilience," Palumbi said. "It looks like the corals have adapted or acclimated to that stress and have a better chance of resisting high global warming temperatures." How long this resilience will last, and whether all corals can do this, are remaining questions.

Does size matter for marine reserves?

A major response to climate change is to protect reefs from other human-caused stresses such as overfishing. And as a result, a large number of Marine Protected Areas have been implemented in the Pacific. Some are the size of a football field. Some are the size of California. Is bigger better?

To determine how much difference the size of a protected area might make, Palumbi analyzed data from a set of small reserves in Fiji, from the Phoenix Islands and from the Papahanaumokuakea Reserve in Hawaii, the largest marine reserve in the world. All three areas are set aside by government agencies.

The Papahanaumokuakea Marine National Monument covers 360,000 square kilometers (139,000 square miles) in Northwest Hawaii and is a "no-take" reserve, which means nothing may be removed, including fish.

The Phoenix Islands Protected Area, which lies in the central Pacific Ocean between Hawaii and Fiji, is over 408,000 square kilometers (158,000 square miles). There are seven no-take reserves in this area, each about 39 kilometers (24 miles) across.

However, in densely populated areas, smaller reserves are more common. Fiji has 246 such protected areas, each averaging about 2 to 3 square kilometers (about a square mile).

"Small sets of marine protected areas are much more convenient: People can fish in between them or go around them easily. Species found within the marine protected areas easily spill out into the surrounding areas, potentially increasing fishing productivity," Palumbi said.

However, wide stretches of protected ocean allow species to spread more easily than small areas, where they risk being caught by fishermen between the reserves. Therefore, small reserves must be well matched to the plants and animals they are protecting because each species spreads at different rates, Palumbi said.

"Species have lots of different dispersal abilities, so it's very hard to have a marine protected area network that works equally well for all different species. You have to tailor the network of reserves to the species," he said.

Though small reserves meet the needs of fewer species than those of larger reserves, setting aside enormous areas of ocean is not that simple. Scientists and policymakers must consider local residents who depend on fisheries for their well-being.

"With heavy human populations, the political, social and economic problems of a big marine protected area are paramount and you've got to go to another strategy. But it's a strategy with limitations because it's hard to design an area perfectly for all species that need protection," Palumbi said. The most effective reserve is one that balances preservation of species with human needs, he said. Finding that balance is the challenge.

Louis Bergeron | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

A new look at thyroid diseases

28.10.2016 | Life Sciences

Sweetening neurotransmitter receptors and other neuronal proteins

28.10.2016 | Life Sciences

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

More VideoLinks >>>