Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative statistical model for short-term prediction of heavy rainfalls locally – University of the Basque Country PhD thesis

29.04.2010
Storm water tanks are an essential element in the sanitary water networks of cities like Bilbao, as they can avoid floods in heavy rain situations.

They carry out storage functions: principally, when it starts to rain heavily, they hold the initial volume rush of rainfall, preventing the sudden arrival of a large amount of water at the treatment plant.

The problem is that, in order to have them work efficiently, it is necessary to know beforehand that, effectively, it is about to rain intensely; it is estimated that a margin of six hours notice is needed in order for everything to be prepared. This is why the physicist Alejandro Fernández has undertaken trials with an innovative model for statistical prediction, applying it to the public water supply network run by the Aguas Bilbao Bizkaia Water Consortium.

The PhD thesis presented at the University of the Basque Country (UPV/EHU) is entitled, Predictive precipitation model applied to the management of the public water supply network in the metropolitan area of Bilbao. Mr Fernández studied the behaviour of the variants corresponding to precipitations within a small perimeter (10 x 15 km, approximately) and with an interval of time of between 3 and 24 hours, and investigated up to what point rainfall can be predicted under these conditions.

Downscaling technique
He used the technique of downscaling, i.e. he combined various methods of obtaining useful data on predictions at a European and world scale, and he reduced this scale to the point of adapting it to the dimensions of Bilbao. For example, he took the ERA-40 re-analysis of the European Centre for Medium-Range Weather Forecast (ECMWF) as a working basis; a study of atmospheric data gathered between 1957 and 2002 and which took into account, amongst other considerations, temperature, pressure, humidity and wind. Mr Fernández also used the dynamic MM5 method; it is used in order to obtain meteorological data in real time, as well as to carry out simulations. He started at a worldwide level, gradually reducing the net until centring on Bilbao. Finally, the statistical methods were included, together with the re-analysis of the data and the dynamic methods. In this case, the researcher looked for antecedents, comparing the day of prediction with rainy days that previously had had similar characteristics.

Mr Fernández undertook trials in order to validate the model and, to this end, he calculated the number of correct hits and the number of false alarms. He compared these with prediction methods for non-local rainfall and, as he concluded, the results proved to be superior to methods such as pure climatology or certain dynamic methods. The results, likewise, are on a par with more complex models which use Earth and satellite radar; for example, Nimrod. The thesis concluded that the proposed model could improve the management of the public water supply network in Greater Bilbao. However, he also made it clear that greater development of this model is required for the management to be totally automatic, and that for the moment human supervision is essential. Mr Fernández proposed providing more data for the model for its enhancement; such as, for example, that from local pluviometry or that gathered in real time from the radar at Punta Galea, a cape located in the Basque Country.

Extreme episodes every 250 years
When a water sanitation network is built, the frequency of extreme rainfall in this metropolitan zone has also to be taken into account. In his thesis Mr Fernández investigated how to predict this frequency.

The researcher contrasted Gumbel and Pareto statistical methods to calculate this frequency. His aim was to find out the maximum possible thresholds, with a degree of certainty of at least 95 % regarding the intensity of possible precipitation in the region of Bilbao every certain number of years. In fact, in order to verify that the mentioned calculation complied with a minimum level of reliability, he used a computer simulation technique called Bootstrap Resampling.

According to the conclusions of the PhD, rainfalls such as that which devastated Bilbao in 1983 can happen with greater frequency than has been thought. To date it has been believed that these phenomena could only occur every 500 years at the most but, in fact, they can happen, on average, once every 250 years.

About the author
Mr Alejandro Fernández Ferrero (Barakaldo, 1968) has a degree in Physical Sciences and is a doctor in Physical Engineering. He undertook his thesis under the direction of Gabriel Ibarra Berastegi and Jon Saenz Agirre; lecturers respectively at the Department of Fluid Mechanics at the Higher Technical School of Engineers in Bilbao and the Department of Applied Physics II of the Faculty of Science and Technology at the Leioa campus of the UPV/EHU. Mr Fernández is currently a senior technical officer for the Technical Services of the Aguas Bilbao Bizkaia Consortium. He undertook his thesis at the UPV/EHU and at the Consortium.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>