Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative statistical model for short-term prediction of heavy rainfalls locally – University of the Basque Country PhD thesis

29.04.2010
Storm water tanks are an essential element in the sanitary water networks of cities like Bilbao, as they can avoid floods in heavy rain situations.

They carry out storage functions: principally, when it starts to rain heavily, they hold the initial volume rush of rainfall, preventing the sudden arrival of a large amount of water at the treatment plant.

The problem is that, in order to have them work efficiently, it is necessary to know beforehand that, effectively, it is about to rain intensely; it is estimated that a margin of six hours notice is needed in order for everything to be prepared. This is why the physicist Alejandro Fernández has undertaken trials with an innovative model for statistical prediction, applying it to the public water supply network run by the Aguas Bilbao Bizkaia Water Consortium.

The PhD thesis presented at the University of the Basque Country (UPV/EHU) is entitled, Predictive precipitation model applied to the management of the public water supply network in the metropolitan area of Bilbao. Mr Fernández studied the behaviour of the variants corresponding to precipitations within a small perimeter (10 x 15 km, approximately) and with an interval of time of between 3 and 24 hours, and investigated up to what point rainfall can be predicted under these conditions.

Downscaling technique
He used the technique of downscaling, i.e. he combined various methods of obtaining useful data on predictions at a European and world scale, and he reduced this scale to the point of adapting it to the dimensions of Bilbao. For example, he took the ERA-40 re-analysis of the European Centre for Medium-Range Weather Forecast (ECMWF) as a working basis; a study of atmospheric data gathered between 1957 and 2002 and which took into account, amongst other considerations, temperature, pressure, humidity and wind. Mr Fernández also used the dynamic MM5 method; it is used in order to obtain meteorological data in real time, as well as to carry out simulations. He started at a worldwide level, gradually reducing the net until centring on Bilbao. Finally, the statistical methods were included, together with the re-analysis of the data and the dynamic methods. In this case, the researcher looked for antecedents, comparing the day of prediction with rainy days that previously had had similar characteristics.

Mr Fernández undertook trials in order to validate the model and, to this end, he calculated the number of correct hits and the number of false alarms. He compared these with prediction methods for non-local rainfall and, as he concluded, the results proved to be superior to methods such as pure climatology or certain dynamic methods. The results, likewise, are on a par with more complex models which use Earth and satellite radar; for example, Nimrod. The thesis concluded that the proposed model could improve the management of the public water supply network in Greater Bilbao. However, he also made it clear that greater development of this model is required for the management to be totally automatic, and that for the moment human supervision is essential. Mr Fernández proposed providing more data for the model for its enhancement; such as, for example, that from local pluviometry or that gathered in real time from the radar at Punta Galea, a cape located in the Basque Country.

Extreme episodes every 250 years
When a water sanitation network is built, the frequency of extreme rainfall in this metropolitan zone has also to be taken into account. In his thesis Mr Fernández investigated how to predict this frequency.

The researcher contrasted Gumbel and Pareto statistical methods to calculate this frequency. His aim was to find out the maximum possible thresholds, with a degree of certainty of at least 95 % regarding the intensity of possible precipitation in the region of Bilbao every certain number of years. In fact, in order to verify that the mentioned calculation complied with a minimum level of reliability, he used a computer simulation technique called Bootstrap Resampling.

According to the conclusions of the PhD, rainfalls such as that which devastated Bilbao in 1983 can happen with greater frequency than has been thought. To date it has been believed that these phenomena could only occur every 500 years at the most but, in fact, they can happen, on average, once every 250 years.

About the author
Mr Alejandro Fernández Ferrero (Barakaldo, 1968) has a degree in Physical Sciences and is a doctor in Physical Engineering. He undertook his thesis under the direction of Gabriel Ibarra Berastegi and Jon Saenz Agirre; lecturers respectively at the Department of Fluid Mechanics at the Higher Technical School of Engineers in Bilbao and the Department of Applied Physics II of the Faculty of Science and Technology at the Leioa campus of the UPV/EHU. Mr Fernández is currently a senior technical officer for the Technical Services of the Aguas Bilbao Bizkaia Consortium. He undertook his thesis at the UPV/EHU and at the Consortium.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>