Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Innovative statistical model for short-term prediction of heavy rainfalls locally – University of the Basque Country PhD thesis

Storm water tanks are an essential element in the sanitary water networks of cities like Bilbao, as they can avoid floods in heavy rain situations.

They carry out storage functions: principally, when it starts to rain heavily, they hold the initial volume rush of rainfall, preventing the sudden arrival of a large amount of water at the treatment plant.

The problem is that, in order to have them work efficiently, it is necessary to know beforehand that, effectively, it is about to rain intensely; it is estimated that a margin of six hours notice is needed in order for everything to be prepared. This is why the physicist Alejandro Fernández has undertaken trials with an innovative model for statistical prediction, applying it to the public water supply network run by the Aguas Bilbao Bizkaia Water Consortium.

The PhD thesis presented at the University of the Basque Country (UPV/EHU) is entitled, Predictive precipitation model applied to the management of the public water supply network in the metropolitan area of Bilbao. Mr Fernández studied the behaviour of the variants corresponding to precipitations within a small perimeter (10 x 15 km, approximately) and with an interval of time of between 3 and 24 hours, and investigated up to what point rainfall can be predicted under these conditions.

Downscaling technique
He used the technique of downscaling, i.e. he combined various methods of obtaining useful data on predictions at a European and world scale, and he reduced this scale to the point of adapting it to the dimensions of Bilbao. For example, he took the ERA-40 re-analysis of the European Centre for Medium-Range Weather Forecast (ECMWF) as a working basis; a study of atmospheric data gathered between 1957 and 2002 and which took into account, amongst other considerations, temperature, pressure, humidity and wind. Mr Fernández also used the dynamic MM5 method; it is used in order to obtain meteorological data in real time, as well as to carry out simulations. He started at a worldwide level, gradually reducing the net until centring on Bilbao. Finally, the statistical methods were included, together with the re-analysis of the data and the dynamic methods. In this case, the researcher looked for antecedents, comparing the day of prediction with rainy days that previously had had similar characteristics.

Mr Fernández undertook trials in order to validate the model and, to this end, he calculated the number of correct hits and the number of false alarms. He compared these with prediction methods for non-local rainfall and, as he concluded, the results proved to be superior to methods such as pure climatology or certain dynamic methods. The results, likewise, are on a par with more complex models which use Earth and satellite radar; for example, Nimrod. The thesis concluded that the proposed model could improve the management of the public water supply network in Greater Bilbao. However, he also made it clear that greater development of this model is required for the management to be totally automatic, and that for the moment human supervision is essential. Mr Fernández proposed providing more data for the model for its enhancement; such as, for example, that from local pluviometry or that gathered in real time from the radar at Punta Galea, a cape located in the Basque Country.

Extreme episodes every 250 years
When a water sanitation network is built, the frequency of extreme rainfall in this metropolitan zone has also to be taken into account. In his thesis Mr Fernández investigated how to predict this frequency.

The researcher contrasted Gumbel and Pareto statistical methods to calculate this frequency. His aim was to find out the maximum possible thresholds, with a degree of certainty of at least 95 % regarding the intensity of possible precipitation in the region of Bilbao every certain number of years. In fact, in order to verify that the mentioned calculation complied with a minimum level of reliability, he used a computer simulation technique called Bootstrap Resampling.

According to the conclusions of the PhD, rainfalls such as that which devastated Bilbao in 1983 can happen with greater frequency than has been thought. To date it has been believed that these phenomena could only occur every 500 years at the most but, in fact, they can happen, on average, once every 250 years.

About the author
Mr Alejandro Fernández Ferrero (Barakaldo, 1968) has a degree in Physical Sciences and is a doctor in Physical Engineering. He undertook his thesis under the direction of Gabriel Ibarra Berastegi and Jon Saenz Agirre; lecturers respectively at the Department of Fluid Mechanics at the Higher Technical School of Engineers in Bilbao and the Department of Applied Physics II of the Faculty of Science and Technology at the Leioa campus of the UPV/EHU. Mr Fernández is currently a senior technical officer for the Technical Services of the Aguas Bilbao Bizkaia Consortium. He undertook his thesis at the UPV/EHU and at the Consortium.

Amaia Portugal | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>