Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Initial Fibertect Field Test a Success

21.06.2010
A preliminary test of Fibertect® on the soiled beaches of Grand Isle, La., has proven it successful at picking up the oily paste washing ashore at beaches and marshes across the Gulf State region.

Seshadri Ramkumar, an associate professor of nonwoven technologies, said the Texas Tech-created nonwoven cotton absorbent wipe with activated carbon core makes it a perfect remediation tool for use by cleaning crews trying to remove the toxic material.

Not only did it clean up the rust-colored crude oil, but also it adsorbed toxic polycyclic aromatic hydrocarbon vapors reportedly sickening oil spill clean-up crew members.

“It definitely has proven itself a perfect product for cleaning up the oil spill,” Ramkumar said. “This preliminary test in Louisiana has shown that our wipe material is unique from others in that it easily absorbs liquids, and it has vapor-holding capacity. This will help workers clean beaches and stay safe at the same time.”

Ramkumar said his latest research shows raw cotton-carbon Fibertect® can absorb oil up to 15 times its weight. Unlike synthetic materials like polypropylene that are currently used in many oil containment booms, Fibertect® is made from environmentally friendly raw cotton and carbon.

Amit Kapoor is president of First Line Technology, which distributes Fibertect® commercially. Though the product has been tested in the lab with raw crude and motor oil, he said the company wanted to field-test the product.

Earlier this week, he sent a sales representative, who also works as an independent contractor for BP, to one of the worst-hit areas.

“We wanted to test the effectiveness of Fibertect® on the crude oil for beach cleanup,” Kapoor said. “Fibertect® was taken to the empty beaches of Grand Isle, and then laid out on top of a blob of oil that had settled on the beach. It worked very well in absorbing and containing the oil. The glob stuck to the Fibertect® and did not release from the material.”

Though Kapoor said he had seen Fibertect® pick up similar material with a pasty consistency, such as petroleum jelly, the results shocked the sales representative sent to run the experiment.

“Our representative was shocked because he hadn’t seen a product work like that with the speed or the effectiveness,” Kapoor said. “He showed many other contractors that were working on the beach and they were impressed as well.”

Fibertect® was approved for use as a sorbent by the U.S. Environmental Protection Agency, Ramkumar said. The product already has proven that it can also adsorb toxic fumes associated with chemical remediation, he said. Evaluation by Lawrence Livermore National Laboratory found that it can retain offgassing mustard vapors efficiently and does not shed loose particles.

Originally developed to protect the U.S. military from chemical and biological warfare agents, Fibertect® contains a fibrous activated carbon center that is sandwiched between layers.

The top and bottom layers, made from raw cotton, can absorb oil while the center layer holds volatile compounds such as the polycyclic aromatic hydrocarbons, or blistering agents such as mustard vapors or other toxic chemicals.

“Fibertect® already has proven to be effective in the bulk decontamination of chemical warfare agents and toxic industrial chemicals, but our proposal here is to use it to aid in the clean-up efforts in the Gulf,” Kapoor said. “Fibertect® allows for a green, environmentally safe, biodegradable technology that is perfect for the expanding effort to protect and decontaminate coastal lands and wildlife. We welcome the opportunity to work with the government, BP or anyone else in a joint effort to defend and preserve our planet.”

CONTACT: Seshadri Ramkumar, associate professor of nonwoven technologies, The Institute of Environmental and Human Health, Texas Tech University, (806) 885-4567, or s.ramkumar@ttu.edu; Amit Kapoor, president, First Line Technology, (703) 995-7510 orakapoor@firstlinetech.com

John Davis | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>