Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inflammatory responses of salmon may be influenced by new types of feed

29.08.2008
Øyvind Haugland studied inflammatory reactions in salmon for his doctorate, and in particular how the ingredients of newer feed sources influence these reactions.

An increased understanding of the cell types of the fish immune system, and how they communicate with each other, is important for the development of better vaccines for salmon farming, and to shed light on the ways that new feed types may influence fish health.

The aim of the doctorate was to study how one of the key mediators of inflammation, tumour necrosis factor a (TNF-a ), influences and controls the earlier phases of inflammation and how it influences the innate and adaptive immune systems. The major regulators of the immune response are the cytokines, small proteins that function as messengers among the cells of the immune defence system. One of these cytokines is TNF-a.

In the course of his studies, Øyvind Haugland cloned, sequenced and characterised TNF-a in salmon.The results show that there are two variations of the gene in salmon. Studies in fish after vaccination and of inflammatory cells grown in cell culture show that these two variations are regulated in different ways. The significance of TNF-a was studied in connection with vaccination of salmon and the introduction of alternative feed sources, which also may influence the salmon inflammatory reaction.

Studies in salmon have shown that vaccination with oil-containing vaccines leads to a rapid and intense, but temporary, expression of TNF-a and other cytokines. Three weeks after vaccination, however, the levels of cytokines were nonetheless insufficient to alter the amount or expression of genes influencing the presentation of vaccine components to other parts of the immune system. The key factor here is almost certainly time, in that the inflammatory response of salmon is much slower than it is in warm-blooded animals.

With the aquaculture industry showing strong growth, future increases in production will demand the use of alternative feeds. The availability of marine feedstuffs on the world market is today limited, and the hunt for alternatives to both fish meal as a protein source, and to fish oil, has been going on for a long time. An important question in this regard is whether alternative feed sources affect fish immune defence systems and health. In his doctorate, Haugland investigated whether components in some of these alternative feed sources can influence the inflammatory reaction of salmon.

An alternative to the fish meal currently used in feed is soya protein. The results of the work showed that an extract from the soya plant, Glycine tomentella, reduces the level of one of the central chemical messengers in inflammation, none other than TNF-a.

Fish oil is a scarce resource that in fish feed is being replaced by rapeseed oil. Haugland's studies have shown that this replacement leads to significant changes in the fatty acid composition of salmon tissues, but that neither the degree of inflammation nor the bacteria-killing abilities appear to be affected.

Cand. med. vet. Øyvind Haugland defended his thesis for the degree of Philosohiae Doctor on July 4, 2008 at the Norwegian School of Veterinary Science, with the title ”Studies of inflammation and immunity in Atlantic salmon – with focus on TNF-a expression”.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/The-inflammatory-responses-of-salmon-may-be-influenced-by-new-types-of-feed/

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>