Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The inflammatory responses of salmon may be influenced by new types of feed

29.08.2008
Øyvind Haugland studied inflammatory reactions in salmon for his doctorate, and in particular how the ingredients of newer feed sources influence these reactions.

An increased understanding of the cell types of the fish immune system, and how they communicate with each other, is important for the development of better vaccines for salmon farming, and to shed light on the ways that new feed types may influence fish health.

The aim of the doctorate was to study how one of the key mediators of inflammation, tumour necrosis factor a (TNF-a ), influences and controls the earlier phases of inflammation and how it influences the innate and adaptive immune systems. The major regulators of the immune response are the cytokines, small proteins that function as messengers among the cells of the immune defence system. One of these cytokines is TNF-a.

In the course of his studies, Øyvind Haugland cloned, sequenced and characterised TNF-a in salmon.The results show that there are two variations of the gene in salmon. Studies in fish after vaccination and of inflammatory cells grown in cell culture show that these two variations are regulated in different ways. The significance of TNF-a was studied in connection with vaccination of salmon and the introduction of alternative feed sources, which also may influence the salmon inflammatory reaction.

Studies in salmon have shown that vaccination with oil-containing vaccines leads to a rapid and intense, but temporary, expression of TNF-a and other cytokines. Three weeks after vaccination, however, the levels of cytokines were nonetheless insufficient to alter the amount or expression of genes influencing the presentation of vaccine components to other parts of the immune system. The key factor here is almost certainly time, in that the inflammatory response of salmon is much slower than it is in warm-blooded animals.

With the aquaculture industry showing strong growth, future increases in production will demand the use of alternative feeds. The availability of marine feedstuffs on the world market is today limited, and the hunt for alternatives to both fish meal as a protein source, and to fish oil, has been going on for a long time. An important question in this regard is whether alternative feed sources affect fish immune defence systems and health. In his doctorate, Haugland investigated whether components in some of these alternative feed sources can influence the inflammatory reaction of salmon.

An alternative to the fish meal currently used in feed is soya protein. The results of the work showed that an extract from the soya plant, Glycine tomentella, reduces the level of one of the central chemical messengers in inflammation, none other than TNF-a.

Fish oil is a scarce resource that in fish feed is being replaced by rapeseed oil. Haugland's studies have shown that this replacement leads to significant changes in the fatty acid composition of salmon tissues, but that neither the degree of inflammation nor the bacteria-killing abilities appear to be affected.

Cand. med. vet. Øyvind Haugland defended his thesis for the degree of Philosohiae Doctor on July 4, 2008 at the Norwegian School of Veterinary Science, with the title ”Studies of inflammation and immunity in Atlantic salmon – with focus on TNF-a expression”.

Magnhild Jenssen | alfa
Further information:
http://www.veths.no
http://www.veths.no/105/English/Kima/The-inflammatory-responses-of-salmon-may-be-influenced-by-new-types-of-feed/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>