Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industry Fishing for Profits, Not Predators

28.06.2010
People who fish for a living pursue top profits, not necessarily top predators, according to the first-ever analysis of worldwide catch and economic data for the past 55 years.

This differs from the observation raised 10 years ago that humans were “fishing down” the food web. It was assumed that catches of the predators at the top of the food chain, such as halibut and tuna, were declining after fishers started landing more fish from lower on the food chain, such as herring and anchovies.

The idea was that people had targeted fish at top of the food web causing declines that forced harvests of fish at ever lower “trophic levels” in the food web. Proponent of the idea at the time wrote, “If we don’t manage this resource, we will be left with a diet of jellyfish and plankton stew.”

Fishing down the food web has been debated by biologists and fisheries managers since the idea emerged. However, some in the news media, as well as a number of conservation groups and individuals, accepted the hypothesis without question, according to Suresh Sethi, a University of Washington doctoral student in aquatic and fishery sciences.

“We wanted to examine why fishermen might be motivated to preferentially harvest different trophic levels and our data showed that fishing down the food web – by moving from higher to lower value species – is an incomplete story of the evolution of global fishery development,” says Sethi, lead author of a paper on the subject published this week in the early edition of the Proceedings of the National Academy of Sciences. “We found no evidence that humans first developed commercial fisheries on top predators then sequentially moved to species lower in the food web since the 1950s. Instead, those who fish for a living have pursued high revenue fisheries, no matter what the tropic level of the species.”

It’s important to know what motivates those who fish for a living as nations move toward ecosystem-based management, Sethi says.

“Attributes related to economic opportunity will be important for understanding which species are susceptible to new fishery development or expansion of existing harvest when costs and benefits are altered, for example, through government subsidies,” the paper says. Co-authors are Trevor Branch, UW research scientist with aquatic and fishery sciences, and Reg Watson, senior research fellow with University of British Columbia, Vancouver.

It was the late 1990s when University of British Columbia’s Daniel Pauly published findings in Science magazine that said global landings of fish included more species from lower trophic levels. In discussions that followed, it was assumed that this was because fish at the higher levels fetched the best prices and, as they were depleted, fishers had to turn to lower-value fish that also are lower on the food web.

Work published in 2006 challenged the idea that the largest fish were, in fact, gone. The work led by UW researcher Tim Essington documented that, in the majority of ecosystems studied, when the catch changed to include fish from lower trophic levels, the catch of fish higher up the food chain stayed the same or increased.

The new research considers the assumption that fish at the top of the food web are targeted because they have the most economic value. Some do, but many don’t.

Take price. The authors divided fisheries into three groups and used a worldwide economic database to find that average prices for the lowest trophic levels, which includes pricey shellfish such as shrimp and abalone, were 25 percent higher overall than fish at the highest trophic level. Prices for the lowest level were 45 percent higher than for the middle group, which includes fish like herring.

In the drive to catch fish with the best economic value, species that are super abundant present some of the best opportunities. Alaska pollock, for example, are caught in great quantities in the Bering Sea and are a very valuable fishery even though the fish is inexpensive to buy and not high on the food web. Similarly, species found in shallower water were targeted first because they are less expensive to catch and therefore profitable even if they don’t fetch top prices, the researchers said. The fishing industry also preferred larger-body fish that can be made into more kinds of products, some with higher values.

Taking fishing motivation into account should help make plans for sustainable harvests more reliable. This is of growing importance in a world where fishing is a mature industry and the potential for new fisheries is very limited, co-author Branch says.

“Our research revealed that nearly all high-catch fisheries are already developed, and that few new high-catch or valuable fishing opportunities exist today,” Branch says. “Total revenue from new fisheries dropped 95 percent from 1950 to 1999. Meanwhile, fisheries already developed by 1980 contribute more than 90 percent of both catch and total revenue expected from marine fisheries today.”

This work was part of a National Center for Ecological Analysis and Synthesis working group funded by the National Science Foundation and the Gordon and Betty Moore Foundation.

For more information:
Sethi, 206-999-2927, personal cell; sasethi@uw.edu
Branch, 206-450-2830, personal cell; tbranch@uw.edu

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>