Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Industrial Age Helps Some Coastal Regions Capture Carbon Dioxide

06.12.2013
Researchers assert coastal ocean is an important component of global carbon cycle
Coastal portions of the world’s oceans, once believed to be a source of carbon dioxide (CO2) to the atmosphere, are now thought to absorb as much as two-thirds more carbon than they emitted in the preindustrial age, researchers estimate.

These coastal areas, which now appear to operate as one of the several types of so-called carbon “sinks,” may help moderate global warming by absorbing carbon dioxide, counteracting some of the CO2 released into the atmosphere by human activities. Scientists refer to the extensive shallow waters between land and open oceans as the “coastal ocean.”

That shift of the coastal ocean from carbon source to sink, quantified for the first time in the Dec. 5, 2013, issue of the journal Nature, suggests coastal areas are a key component of the global carbon budget, the scientists say.

“Compared to the open ocean, we know less about the coastal ocean’s carbon cycle even though it’s right in front of us,” said James Bauer, professor of evolution, ecology and organismal biology in Ohio State University’s College of Arts and Sciences and lead author of the paper.

“There is an intense need for more research because we don’t currently have the data to know exactly what’s going on everywhere,” he said. “The methods are there now that weren’t available 50 years ago. We just have to commit to increasing the number and types of coastal regions being studied.”

Prior to the industrial age, decomposing plant materials in coastal waters and sediments likely led to the release of carbon dioxide. The Nature paper suggests that microscopic plant growth in coastal areas, fueled by fertilizer runoff, is now leading to greater uptake of CO2. It also suggests that the atmospheric buildup of carbon dioxide caused by the burning of fossil fuels is further contributing to this uptake of CO2 by coastal waters.

New instrumentation allows scientists to generate new best estimates of carbon cycling in coastal areas. Using the latest measures available, Bauer and colleagues created a model estimating that coastal areas released, on average, about 150 million metric tons of carbon per year a century ago. Now, these same waters are estimated to absorb approximately 250 million metric tons of carbon each year.

“Some coastal oceans are still emitting carbon dioxide, so this is a global average and our best estimate of how they’re behaving as a whole around the earth if we add them up based on our current knowledge base,” he said. “To discern a large-scale switch like this on a global scale is fairly unusual.”

Bauer also noted that for the first time, the Intergovernmental Panel on Climate Change (IPCC) is expected to acknowledge the importance of coastal waters to the global carbon cycle in its next report, due out in early 2014. The IPCC’s 2007 report and other analyses of the global carbon cycle have largely neglected to take coastal oceans into account, he said.

“When we’re counting every ton of CO2 that we’re putting into the atmosphere, every additional sink is an important one to identify,” he said.

The capture and release of carbon dioxide is difficult to study in coastal systems because of their diverse and variable nature. Coastal areas also represent an enormous part of the global landscape: The current length of all coastlines could wrap around Earth 41 times.

“The coastline represents a huge linear interface between land and the open ocean, and is very important in the transfer of nutrients and carbon between the two,” said Bauer, also a faculty member in Ohio State’s Environmental Sciences Graduate Program.

The scientists detailed their best effort to come up with estimates of carbon cycling in three subsets of coastal areas: those dominated by river outlets, others consisting of filtering estuaries and bays, and the continental shelf – any coastal water reaching a depth of about 200 meters or fewer. The researchers used what little evidence was available about the preindustrial age to develop a likely scenario for the coastal ocean at that time.

In broad terms, coastal waters were primarily full of decomposing plant materials 100 years ago, which suggests that the coastal ocean of that era released carbon dioxide to the atmosphere.

With the human activity associated with industrialization, however, came the burning of fossil fuels for manufacturing and transportation, putting more carbon dioxide into the air and creating an increased pressure of this gas on some regions of the earth’s surface – including coastal areas. Following World War II, manufacturers also began producing vast quantities of agricultural fertilizers containing nitrogen and phosphorous – and about 95 percent of these nutrients run off into rivers and are flushed into coastal waters. There, these elements stimulate microscopic plant production, which draws carbon dioxide into the water to aid in plant growth.

“The evidence suggests that human activities in coastal zones will continue to have an important impact on global carbon cycling,” Bauer said. “It’s a tricky area of study, but omitting the coastal ocean from the overall carbon budget leaves a gap in projections for future atmospheric CO2 levels.”

This work was supported in part by the National Science Foundation’s Chemical and Biological Oceanography, Integrated Carbon Cycle Research, Arctic Natural Sciences, Long-Term Ecological Research, and Ecosystem Ecology programs; NASA’s Interdisciplinary Research in Earth Science program; the National Oceanic and Atmospheric Administration; Georgia Sea Grant; the European Union’s Seventh Framework Program project GEOCARBON; and the government of the Brussels-Capital Region.

Co-authors of the paper include Wei-Jun Cai of the University of Delaware; Peter Raymond of Yale University; Thomas Bianchi of the University of Florida; Charles Hopkinson of the University of Georgia; and Pierre Regnier of the Université Libre de Bruxelles in Belgium.

Contact:
James Bauer, (614) 292-3706; Bauer.362@osu.edu
(Email is the best way to contact Bauer.)

Emily Caldwell | Newswise
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>