Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing carbon dioxide and decreasing oxygen in the oceans will make it harder for deep-sea animals to "breathe"

20.04.2009
New calculations made by marine chemists from the Monterey Bay Aquarium Research Institute (MBARI) suggest that low-oxygen "dead zones" in the ocean could expand significantly over the next century. These predictions are based on the fact that, as more and more carbon dioxide dissolves from the atmosphere into the ocean, marine animals will need more oxygen to survive.

Concentrations of carbon dioxide are increasing rapidly in the Earth's atmosphere, primarily because of human activities. About one third of the carbon dioxide that humans produce by burning fossil fuels is being absorbed by the world's oceans, gradually causing seawater to become more acidic.

However, such "ocean acidification" is not the only way that carbon dioxide can harm marine animals. In a "Perspective" published today in the journal Science, Peter Brewer and Edward Peltzer combine published data on rising levels of carbon dioxide and declining levels of oxygen in the ocean in a set of new and thermodynamically rigorous calculations. They show that increases in carbon dioxide can make marine animals more susceptible to low concentrations of oxygen, and thus exacerbate the effects of low-oxygen "dead zones" in the ocean.

Brewer and Peltzer's calculations also show that the partial pressure of dissolved carbon dioxide gas (pCO2) in low-oxygen zones will rise much higher than previously thought. This could have significant consequences for marine life in these zones.

For over a decade, Brewer and Peltzer have been working with marine biologists to study the effects of carbon dioxide on marine organisms. High concentrations of carbon dioxide make it harder for marine animals to respire (to extract oxygen from seawater). This, in turn, makes it harder for these animals to find food, avoid predators, and reproduce. Low concentrations of oxygen can have similar effects.

Currently, deep-sea life is threatened by a combination of increasing carbon dioxide and decreasing oxygen concentrations. The amount of dissolved carbon dioxide is increasing because the oceans are taking up more and more carbon dioxide from the atmosphere. At the same time, ocean surface waters are warming and becoming more stable, which allows less oxygen to be carried from the surface down into the depths.

In trying to quantify the impacts of this "double whammy" on marine organisms, Brewer and Peltzer came up with the concept of a "respiration index." This index is based on the ratio of oxygen and carbon dioxide gas in a given sample of seawater. The lower the respiration index, the harder it is for marine animals to respire.

Brewer provides the following analogy, "Animals facing declining oxygen levels and rising CO2 levels will suffer in much the same way that humans in a damaged submarine would suffer, once the concentrations of these gasses reach critical levels. Our work helps define those critical levels for marine animals, and will enable the emerging risk to be quantified and mapped."

In the past, marine biologists have defined "dead zones" based solely on low concentrations of dissolved oxygen. Brewer and Peltzer hope that their respiration index will provide a more precise and quantitative way for oceanographers to identify such areas. Tracking changes in the respiration index could also help marine biologists understand and predict which ocean waters are at risk of becoming dead zones in the future.

To estimate such effects in the open ocean, the MBARI researchers calculated the respiration index at various ocean depths, for several different forecasted concentrations of atmospheric carbon dioxide. They found that the most severe effects would take place in what are known as "oxygen minimum zones." These are depths, typically 300 to 1,000 meters below the surface, where oxygen concentrations are already quite low in many parts of the world's oceans.

Previously, marine biologists have assumed that the effects of increasing carbon dioxide in the oceans would be greatest at the sea surface, where most of the gas enters the ocean. Such studies have predicted a doubling of pCO2 (from about 280 to 560 micro-atmospheres) at the sea surface over the next 100 years. Brewer and Peltzer's calculations suggest that the partial pressure of carbon dioxide will increase even faster in the deep oxygen minimum zones, with pCO2 increasing by 2.5 times, from 1,000 to about 2,500 micro-atmospheres.

Previous studies have indicated that such oxygen minimum zones may expand over the next century. Brewer and Peltzer's research suggests that the effects of this expansion will be even more severe than previously forecast.

According to coauthor Peltzer, "The bottom line is that we think it's important to look at both oxygen and carbon dioxide in the oceans, rather than just one or the other." The impact of these chemical changes may be minimal in well-oxygenated ocean areas, but as the authors point out in their paper, "We may anticipate a very large expansion of the oceanic dead zones."

Journal article:

P. G. Brewer, E. T. Peltzer. Limits to marine life. Science. 2009. Vol 324, Issue 5925. April 16, 2009

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2009/co2-o2/co2-o2-release.html

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>