Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inbreeding not to blame for Colorado's bighorn sheep population decline

27.07.2015

The health of Colorado's bighorn sheep population remains as precarious as the steep alpine terrain the animals inhabit, but a new study led by researchers at the University of Colorado Boulder has found that inbreeding--a common hypothesis for a recent decline--likely isn't to blame.

Bighorn herds tend to be small and isolated in their mountain ecosystems, putting the animals at high risk for a genetic "bottleneck," said Catherine Driscoll, a graduate student in the Department of Ecology and Evolutionary Biology at CU-Boulder and lead author of the study. Previous research has shown that inbreeding can weaken a population's immunity to disease across subsequent generations.


A bighorn sheep in Colorado is pictured.

Credit: Ann Hough / U.S. Fish and Wildlife Service

However, after using mitochondrial DNA data to analyze a diverse set of hereditary markers, researchers found that all five native herds in Rocky Mountain National Park (RMNP) are maintaining healthy levels of genetic variation compared to other bighorn populations across the western United States.

"There's been enough gene flow between the herds, primarily due to high ram migration, that the population has been genetically rescued," Driscoll said.

The findings, which were recently published in the Journal of Wildlife Management, suggest that other factors such as nutritional deficiencies, habitat fragmentation and competition from encroaching mountain goats may play a more significant role in depressing bighorn population growth.

The researchers used DNA testing to examine genetic diversity across five separate RMNP herds. In particular, the study zeroed in on the Mummy herd, which experienced a severe population crash in the mid-1990s and has been especially slow to recover.

Although the Mummy herd is maintaining healthy levels of genetic variation, it may still carry higher exposure to stress factors due to its proximity to roads and trails on the eastern side of RMNP.

Colorado's bighorn population has trended downward since the 1800s, including a sharp 10.2 percent drop between 2001 and 2009. Wildlife managers have occasionally transplanted bighorns from other states in an attempt to restore herd numbers.

In addition to RMNP, bighorns can frequently be spotted at popular viewing destinations such as Mt. Evans, the Colorado National Monument and near Georgetown along Interstate 70.

###

Jeffry Mitton, a professor in the Department of Ecology and Evolutionary Biology at the University of Colorado Boulder; James G. Driscoll, a researcher at the Blue Basin Wildlife Sanctuary; Corey Hazekamp, a research assistant at the University of Massachusetts; and John D. Wehausen, a research associate at the University of California San Diego, co-authored the study.

The National Park Service, Rocky Mountain National Park, the National Science Foundation, the Rocky Mountain Nature Association, the Indian Peaks Wilderness Alliance and the University of Colorado Boulder provided funding for the research.

Contact:

Trent Knoss, CU-Boulder media relations, 303-735-0528
trent.knoss@colorado.edu

Catherine Driscoll | EurekAlert!

Further reports about: Biology CU-Boulder DNA Department Mountain Sheep Wildlife bighorn sheep ecology factors genetic variation levels

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>