Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inbreeding not to blame for Colorado's bighorn sheep population decline

27.07.2015

The health of Colorado's bighorn sheep population remains as precarious as the steep alpine terrain the animals inhabit, but a new study led by researchers at the University of Colorado Boulder has found that inbreeding--a common hypothesis for a recent decline--likely isn't to blame.

Bighorn herds tend to be small and isolated in their mountain ecosystems, putting the animals at high risk for a genetic "bottleneck," said Catherine Driscoll, a graduate student in the Department of Ecology and Evolutionary Biology at CU-Boulder and lead author of the study. Previous research has shown that inbreeding can weaken a population's immunity to disease across subsequent generations.


A bighorn sheep in Colorado is pictured.

Credit: Ann Hough / U.S. Fish and Wildlife Service

However, after using mitochondrial DNA data to analyze a diverse set of hereditary markers, researchers found that all five native herds in Rocky Mountain National Park (RMNP) are maintaining healthy levels of genetic variation compared to other bighorn populations across the western United States.

"There's been enough gene flow between the herds, primarily due to high ram migration, that the population has been genetically rescued," Driscoll said.

The findings, which were recently published in the Journal of Wildlife Management, suggest that other factors such as nutritional deficiencies, habitat fragmentation and competition from encroaching mountain goats may play a more significant role in depressing bighorn population growth.

The researchers used DNA testing to examine genetic diversity across five separate RMNP herds. In particular, the study zeroed in on the Mummy herd, which experienced a severe population crash in the mid-1990s and has been especially slow to recover.

Although the Mummy herd is maintaining healthy levels of genetic variation, it may still carry higher exposure to stress factors due to its proximity to roads and trails on the eastern side of RMNP.

Colorado's bighorn population has trended downward since the 1800s, including a sharp 10.2 percent drop between 2001 and 2009. Wildlife managers have occasionally transplanted bighorns from other states in an attempt to restore herd numbers.

In addition to RMNP, bighorns can frequently be spotted at popular viewing destinations such as Mt. Evans, the Colorado National Monument and near Georgetown along Interstate 70.

###

Jeffry Mitton, a professor in the Department of Ecology and Evolutionary Biology at the University of Colorado Boulder; James G. Driscoll, a researcher at the Blue Basin Wildlife Sanctuary; Corey Hazekamp, a research assistant at the University of Massachusetts; and John D. Wehausen, a research associate at the University of California San Diego, co-authored the study.

The National Park Service, Rocky Mountain National Park, the National Science Foundation, the Rocky Mountain Nature Association, the Indian Peaks Wilderness Alliance and the University of Colorado Boulder provided funding for the research.

Contact:

Trent Knoss, CU-Boulder media relations, 303-735-0528
trent.knoss@colorado.edu

Catherine Driscoll | EurekAlert!

Further reports about: Biology CU-Boulder DNA Department Mountain Sheep Wildlife bighorn sheep ecology factors genetic variation levels

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>