Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving predictions of climate change and its impacts

24.03.2010
New interagency program to generate high-resolution tools for addressing climate change

On March 22 at 11 a.m., EDT, the National Science Foundation (NSF) and the U.S. Departments of Energy and Agriculture hold a webcast announcing the launch of a joint research program to produce high-resolution models for predicting climate change and its resulting impacts.

Called Decadal and Regional Climate Prediction Using Earth System Models (EaSM), the program is designed to generate models that--significantly more powerful than existing models--can help decision-makers develop adaptation strategies addressing climate change. These models will be developed through a joint, interagency solicitation for proposals.

The promise of an historic program

EaSM is distinguished by its promise for generating: 1) predictions of climate change and associated impacts at more localized scales and over shorter time periods than previously possible; and 2) innovative interdisciplinary approaches to address the sources and impacts of climate change. These interdisciplinary approaches will draw on biologists, chemists, computer scientists, geoscientists, materials scientists, mathematicians, physicists, computer specialists and social scientists.

"This extraordinary and exciting multi-agency research program will enable a major step forward in our ability to understand and predict both climate change and its impacts on people--at the spatial and temporal scales relevant to human life and societal decision making," says Timothy Killeen, NSF's assistant director for the Geosciences Directorate.

By producing reliable, accurate information about climate change and resulting impacts at improved geographic and temporal resolutions, models developed under the EaSM solicitation will provide decision-makers with sound scientific bases for developing adaptation and management responses to climate change at regional levels.

"This project integrates expertise from multiple communities--including the fundamental sciences--which is needed to understand climate change processes, and advanced modeling, which is needed to quantitatively assess climate change impacts," says Edward Seidel, NSF's acting assistant director for the Mathematical and Physical Sciences Directorate.

The need for improved climate change models

The development of high-resolution, interdisciplinary predictive models through EaSM is important because the consequences of climate change are becoming more immediate and profound than anticipated. These consequences include prolonged droughts, increased ecosystem stress, reduced agriculture and forest productivity, altered biological feedbacks, degraded ocean and permafrost habitats and the rapid retreat of glaciers and sea ice--all of which are expected to have major impacts on ecological, economic and social systems as well as on human health.

To mitigate these consequences, EaSM models will be designed to support planning for the management of food and water supplies, infrastructure construction, ecosystem maintenance, and other pressing societal issues at more localized levels and more immediate time periods than can existing models.

Program funding

The joint solicitation for EaSM proposals enables the three partner agencies to combine resources and fund the highest-impact projects without duplicating efforts. The FY 2010 EaSM solicitation will be supported by the following funding levels: 1) about $30 million from NSF; 2) about $10 million from DOE; and 3) about $9 million from USDA. This project represents an historic augmentation of support for interdisciplinary climate change research by NSF and its partner agencies.

This solicitation is the first solicitation for the five-year EaSM program, which will run from FY 2010 to FY 2014. Submitted proposals will be reviewed through NSF's peer review process, and awards will be funded by all three partner agencies. About 20 NSF grants under EaSM are expected to be awarded.

Research goals for EaSM

NSF is particularly interested in developing models that will produce reliable predictions of 1) climate change at regional and decadal scales; 2) resulting impacts; and 3) potential adaptations of living systems to these impacts. Related research may, for example, include studies of natural decadal climate change, regional aspects of water and nutrient cycling, and methods to test predictions of climate change.

The USDA is particularly interested in developing climate models that can be linked to crop, forestry and livestock models. Such models will be used to help assess possible risk management strategies and projections of yields at various spatial and temporal scales.

DOE is particularly interested in developing models that better define interactions between climate change and decadal modes of natural climate variability, simulate climate extremes under a changing climate, and help resolve the uncertainties of the indirect effects of aerosols on climate.

Types of proposals

Two types of interdisciplinary proposals will be considered for EaSM funding: Type 1 proposals should be capacity/community building activities, address one or more goals, and last up to three years; these proposals may receive up to $300,000 in annual funding. Type 2 proposals should describe large, ambitious, collaborative, interdisciplinary efforts that advance Earth system modeling on regional and decadal scales, and last three to five years; these proposals may receive from $300,000 to $1 million in annual funding.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>