Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impact of Regional Aerosols in China

25.09.2009
Moisture-laden clouds frequently gather over the heavy industrial regions of southeastern China, yet little rainfall is recorded there. A University of Maryland scientist, working with climate experts from NASA, the U.S. Department of Energy (DoE) and the Chinese Academy of Sciences, discovered one reason may be in a component of those clouds: aerosols.

A heavy concentration of aerosols -- tiny airborne particles of soot, dust, sulfuric acid and organic matter -- can affect rainfall, air quality and the amount of solar radiation reaching the Earth's surface, according to the researchers. Their initial findings from a seven-month study are featured in an article published this week (Sept. 24) in Nature magazine.

"To better understand the impact of aerosols in China is to better understand climate change worldwide," says Zhanqing Li, a professor of atmospheric and oceanic science (CMPS) at Maryland and lead investigator of the project.

Li, who has conducted aerosol research in his native China for more than a decade, says this latest effort represents the largest-ever field experiment on climate research between the United States and China.

Previous studies have shown that different types of aerosols can exhibit quite different effects on climate, says Hongbin Chen, a professor in the Institute of Atmospheric Physics, Chinese Academy of Sciences. "We wanted to gather a large amount of [new] data to improve on the numerical models already in place regarding aerosol-cloud-radiation interaction," he says.

China Monitoring Site. Click to see a larger graphic.The study, which began in May 2008, started with placing remote-sensing instruments in four locations in China (see illustration - left). The state-of-the-art instruments were deployed under the umbrella of the DoE's Atmospheric Radiation Measurements (ARM) program.

The researchers used lidar -- which sends pulsed laser signals skyward -- to measure the concentrations of aerosols and how far these often-industrial byproducts might drift in the atmosphere. Radar was used to determine the height and density of clouds in the region, while other sophisticated equipment measured solar and infrared radiation levels.

"The four locations gave us a good sampling of aerosol impact, including from human activity and from natural matter [dust] from the desert regions," says Warren Wiscombe, a NASA researcher who is chief scientist for the ARM program.

By coordinating these ground measurements with tracking data from NASA satellites, scientists also determined that aerosols could affect weather and climate across East Asia. Li says aerosols born in China can travel over the Pacific to the U.S. and are even suspected of having an impact on the Asian monsoon system.

Li and the ARM researchers used solar radiation measuring equipment to study the impact of aerosols in China.

The Nature article also details challenges the multinational group of scientists faced with Chinese government oversight. Part of the research occurred during the 2008 Summer Olympics in Beijing, and the arrival of much of the scientific equipment was delayed by months, until it cleared Chinese customs.

But the Olympics added an interesting element to the project, says Wiscombe. "We were able to sample aerosols downwind of Beijing both before and during the event, when much of the industrial activity was curtailed in order to decrease air pollution," he says.

Ultimately, Li says, aerosol research should give scientists a baseline to establish more exact definitions on the relationship between weather and climate patterns and large-scale industrializing. "China is fast becoming the world's leading manufacturer, so the region is a perfect test bed for understanding how human activity can affect climate," he says.

WHO: Zhanqing Li, professor of atmospheric and oceanic science at the University of Maryland with a joint appointment in the university's Earth System Science Interdisciplinary Center (ESSIC).

WHAT: Li's research on the impact of regional aerosols in China is featured in the Sept. 24 issue of Nature magazine.

WHERE: The article is available in print (Vol. 461 pp 466-468), on Nature's website, or via PDF download at http://www.newsdesk.umd.edu/pdf/2009/ChinaAerosols.pdf

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>