Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Impact of Regional Aerosols in China

25.09.2009
Moisture-laden clouds frequently gather over the heavy industrial regions of southeastern China, yet little rainfall is recorded there. A University of Maryland scientist, working with climate experts from NASA, the U.S. Department of Energy (DoE) and the Chinese Academy of Sciences, discovered one reason may be in a component of those clouds: aerosols.

A heavy concentration of aerosols -- tiny airborne particles of soot, dust, sulfuric acid and organic matter -- can affect rainfall, air quality and the amount of solar radiation reaching the Earth's surface, according to the researchers. Their initial findings from a seven-month study are featured in an article published this week (Sept. 24) in Nature magazine.

"To better understand the impact of aerosols in China is to better understand climate change worldwide," says Zhanqing Li, a professor of atmospheric and oceanic science (CMPS) at Maryland and lead investigator of the project.

Li, who has conducted aerosol research in his native China for more than a decade, says this latest effort represents the largest-ever field experiment on climate research between the United States and China.

Previous studies have shown that different types of aerosols can exhibit quite different effects on climate, says Hongbin Chen, a professor in the Institute of Atmospheric Physics, Chinese Academy of Sciences. "We wanted to gather a large amount of [new] data to improve on the numerical models already in place regarding aerosol-cloud-radiation interaction," he says.

China Monitoring Site. Click to see a larger graphic.The study, which began in May 2008, started with placing remote-sensing instruments in four locations in China (see illustration - left). The state-of-the-art instruments were deployed under the umbrella of the DoE's Atmospheric Radiation Measurements (ARM) program.

The researchers used lidar -- which sends pulsed laser signals skyward -- to measure the concentrations of aerosols and how far these often-industrial byproducts might drift in the atmosphere. Radar was used to determine the height and density of clouds in the region, while other sophisticated equipment measured solar and infrared radiation levels.

"The four locations gave us a good sampling of aerosol impact, including from human activity and from natural matter [dust] from the desert regions," says Warren Wiscombe, a NASA researcher who is chief scientist for the ARM program.

By coordinating these ground measurements with tracking data from NASA satellites, scientists also determined that aerosols could affect weather and climate across East Asia. Li says aerosols born in China can travel over the Pacific to the U.S. and are even suspected of having an impact on the Asian monsoon system.

Li and the ARM researchers used solar radiation measuring equipment to study the impact of aerosols in China.

The Nature article also details challenges the multinational group of scientists faced with Chinese government oversight. Part of the research occurred during the 2008 Summer Olympics in Beijing, and the arrival of much of the scientific equipment was delayed by months, until it cleared Chinese customs.

But the Olympics added an interesting element to the project, says Wiscombe. "We were able to sample aerosols downwind of Beijing both before and during the event, when much of the industrial activity was curtailed in order to decrease air pollution," he says.

Ultimately, Li says, aerosol research should give scientists a baseline to establish more exact definitions on the relationship between weather and climate patterns and large-scale industrializing. "China is fast becoming the world's leading manufacturer, so the region is a perfect test bed for understanding how human activity can affect climate," he says.

WHO: Zhanqing Li, professor of atmospheric and oceanic science at the University of Maryland with a joint appointment in the university's Earth System Science Interdisciplinary Center (ESSIC).

WHAT: Li's research on the impact of regional aerosols in China is featured in the Sept. 24 issue of Nature magazine.

WHERE: The article is available in print (Vol. 461 pp 466-468), on Nature's website, or via PDF download at http://www.newsdesk.umd.edu/pdf/2009/ChinaAerosols.pdf

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>