Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of Invasive Species Varies with Latitude, Highlighting Need for Biogeographic Perspective on Invasions

27.10.2014

University of Rhode Island ecologist Laura Meyerson and colleague Jim Cronin from Louisiana State University conducted an ambitious large-scale National Science Foundation funded study on native and invasive Phragmites australis (common reed) in North America and Europe. They found that the intensity of plant invasions by non-native species can vary considerably with changes in latitude.

“When looking at a continental scale invasion in particular, we can’t assume that the invasion is uniform across the region because of latitudinal differences in species interactions like herbivore pressure and resistance to herbivory,” said Meyerson, URI associate professor of habitat restoration ecology.

“Some biogeographic regions may be more susceptible to invasions while others are more resistant. So, if we don’t look at invasions at a macro scale, such as for an entire continent, we might misinterpret the invasion process and the strength of its impacts.

“Our continental-scale biogeographic perspective allowed us to have some insights into the heterogeneity of invasions that are not possible for smaller scale studies,” she added.

The research was published this month in the journal Ecology.

In their study of native and non-native sub-species of P. australis on both continents, they also found that herbivores feed upon the native Phragmites in North America at a much greater rate than on the invasive Phragmites.

“Our native Phragmites in North America is getting hammered by both native and introduced insects, whereas the invasive Phragmites in North America suffers far less herbivory than it does in its native Europe,” she said. “That’s partly because when invasives are introduced to a new place, they leave their enemies behind and can devote their resources to greater growth.”

To determine whether differences occurred in resistance to herbivory, Meyerson and Cronin surveyed 13 patches of native Phragmites and 17 patches of non-native Phragmites along the East Coast from Canada to Florida. They conducted similar surveys of 21 patches of Phragmites in Europe from Norway to southern Portugal. (The native European species and the invasive non-native species in North America are the same lineage.)

At each site Meyerson and Cronin measured plant biomass and defenses against herbivores and quantified insect damage by galling, chewing and sucking (aphids) insects to measure the effects of herbivory on Phragmites fitness. They found that chewing and galling insects consumed a greater quantity of the native and non-native plants in the southern part of North America, while aphids were more prevalent at higher latitudes.

“Interactions between herbivores and native plants were much stronger than interactions between herbivores and invasive plants at lower latitudes, making the southern region more susceptible to invasive species,” Cronin said. “This means that the invasive plants suffer less herbivory at lower latitudes than the native plants, giving the invasive Phragmites a greater opportunity to invade.

“This pattern weakens at higher latitudes suggesting that herbivores may be more important in limiting invasion success in the north,” he added.

Based on their results, Meyerson and Cronin believe that efforts to identify an insect that could be used as an agent of biocontrol for the invasive Phragmites may do more damage to the native species than to the invasive variety.

“Because we found that all of the insects perform better on the native than on the invasive type, it suggests to us that if a biocontrol is released in North America, it’s going to harm the native Phragmites more than the invasive,” they said. “Our data suggests that it would be ill advised to release a biocontrol agent against Phragmites.”

Contact Information

Todd McLeish
Public Information Officer
tmcleish@uri.edu
Phone: 401-874-7892

Todd McLeish | newswise
Further information:
http://www.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>