Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of Invasive Species Varies with Latitude, Highlighting Need for Biogeographic Perspective on Invasions

27.10.2014

University of Rhode Island ecologist Laura Meyerson and colleague Jim Cronin from Louisiana State University conducted an ambitious large-scale National Science Foundation funded study on native and invasive Phragmites australis (common reed) in North America and Europe. They found that the intensity of plant invasions by non-native species can vary considerably with changes in latitude.

“When looking at a continental scale invasion in particular, we can’t assume that the invasion is uniform across the region because of latitudinal differences in species interactions like herbivore pressure and resistance to herbivory,” said Meyerson, URI associate professor of habitat restoration ecology.

“Some biogeographic regions may be more susceptible to invasions while others are more resistant. So, if we don’t look at invasions at a macro scale, such as for an entire continent, we might misinterpret the invasion process and the strength of its impacts.

“Our continental-scale biogeographic perspective allowed us to have some insights into the heterogeneity of invasions that are not possible for smaller scale studies,” she added.

The research was published this month in the journal Ecology.

In their study of native and non-native sub-species of P. australis on both continents, they also found that herbivores feed upon the native Phragmites in North America at a much greater rate than on the invasive Phragmites.

“Our native Phragmites in North America is getting hammered by both native and introduced insects, whereas the invasive Phragmites in North America suffers far less herbivory than it does in its native Europe,” she said. “That’s partly because when invasives are introduced to a new place, they leave their enemies behind and can devote their resources to greater growth.”

To determine whether differences occurred in resistance to herbivory, Meyerson and Cronin surveyed 13 patches of native Phragmites and 17 patches of non-native Phragmites along the East Coast from Canada to Florida. They conducted similar surveys of 21 patches of Phragmites in Europe from Norway to southern Portugal. (The native European species and the invasive non-native species in North America are the same lineage.)

At each site Meyerson and Cronin measured plant biomass and defenses against herbivores and quantified insect damage by galling, chewing and sucking (aphids) insects to measure the effects of herbivory on Phragmites fitness. They found that chewing and galling insects consumed a greater quantity of the native and non-native plants in the southern part of North America, while aphids were more prevalent at higher latitudes.

“Interactions between herbivores and native plants were much stronger than interactions between herbivores and invasive plants at lower latitudes, making the southern region more susceptible to invasive species,” Cronin said. “This means that the invasive plants suffer less herbivory at lower latitudes than the native plants, giving the invasive Phragmites a greater opportunity to invade.

“This pattern weakens at higher latitudes suggesting that herbivores may be more important in limiting invasion success in the north,” he added.

Based on their results, Meyerson and Cronin believe that efforts to identify an insect that could be used as an agent of biocontrol for the invasive Phragmites may do more damage to the native species than to the invasive variety.

“Because we found that all of the insects perform better on the native than on the invasive type, it suggests to us that if a biocontrol is released in North America, it’s going to harm the native Phragmites more than the invasive,” they said. “Our data suggests that it would be ill advised to release a biocontrol agent against Phragmites.”

Contact Information

Todd McLeish
Public Information Officer
tmcleish@uri.edu
Phone: 401-874-7892

Todd McLeish | newswise
Further information:
http://www.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>