Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen protects nuclear fuel in final storage

21.04.2009
When Sweden's spent nuclear fuel is to be permanently stored, it will be protected by three different barriers.

Even if all three barriers are damaged, the nuclear fuel will not dissolve into the groundwater, according to a new doctoral dissertation from Chalmers University of Technology.

By Midsummer it will be announced where Sweden's spent nuclear fuel will be permanently stored. Ahead of the decision a debate is underway regarding how safe the method for final storage is, primarily in terms of the three barriers that are intended to keep radioactive material from leaking into the surrounding groundwater.

But according to the new doctoral dissertation, uranium would not be dissolved by the water even if all three barriers were compromised.

"This is a result of what we call the hydrogen effect," says Patrik Fors, who will defend his thesis in nuclear chemistry at Chalmers on Friday. "The hydrogen effect was discovered in 2000. It's a powerful effect that was not factored in when plans for permanent storage began to be forged, and now I have shown that it's even more powerful than was previously thought."

The hydrogen effect is predicated on the existence of large amounts of iron in connection with the nuclear fuel. In the Swedish method for final storage, the first barrier consists of a copper capsule that is reinforced with iron. The second barrier is a buffer of bentonite clay, and the third is 500 meters of granite bedrock. Some other countries have chosen

to make the first barrier entirely of iron.

It is known that microorganisms and fissure minerals in the rock will consume all the oxygen in the groundwater. If all three barriers were to be damaged, the iron in the capsule would therefore be anaerobically corroded by the water, producing large amounts of hydrogen. In final storage at a depth of 500 meters, a pressure of at least 5 megapascals of hydrogen would be created.

Patrik Fors has now created these conditions in the laboratory and examined three different types of spent nuclear fuel. All of the trials showed that the hydrogen protects the fuel from being dissolved in the water, even though the highly radioactive fuels create a corrosive environment in the water as a result of their radiation. The reason for the protective effect is that the hydrogen prevents the uranium from oxidizing and converting to liquid form.

Furthermore, the hydrogen makes the oxidized uranium that already exists as a liquid in the water shift to a solid state. The outcome was that the amount of uranium found dissolved in the water, after experiments lasting several years, was lower than the natural levels in Swedish groundwater.

"The hydrogen effect will prevent the dissolution of nuclear fuel until the fuel's radioactivity is so low that it need no longer be considered a hazard," says Patrik Fors. The amount of iron in the capsules is so great that it would produce sufficient hydrogen to protect the fuel for tens of

thousands of years.

Patrik Fors carried out his experiments at the Institute for Transuranium Elements in Karlsruhe, Germany, in a joint project with Chalmers. The institute is operated by the European Commission. The research was also funded by SKB, the Swedish Nuclear Fuel and Waste Management Company.

The dissertation "The effect of dissolved hydrogen on spent nuclear fuel corrosion" will be publicly defended on April 24 at 10 a.m. Place: Hall KE, Chemistry Building, Kemigården 4, Chalmers University of Technology, Gothenburg, Sweden.

For more information, please contact:
Patrik Fors, Nuclear Chemistry, Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden
Tel: +46707-696 334
patrik.fors@chalmers.se
Supervisor: Kastriot Spahiu, Adjunct Professor, Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden
+468-459 8561
Kastriot.spahiu@skb.se

Sofie Hebrand | idw
Further information:
http://www.vr.se
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=91896
http://chalmersnyheter.chalmers.se/chalmers03/english/Article.jsp?article=13431

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>