Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hydraulic Fracturing Poses Substantial Water Pollution Risks, Analysts Say

Risk analysts have concluded that the disposal of contaminated wastewater from hydraulic fracturing (or “fracking”) wells producing natural gas in the intensively developed Marcellus Shale region poses a substantial potential risk of river and other water pollution.

That conclusion, the analysts say, calls for regulators and others to consider additional mandatory steps to reduce the potential of drinking water contamination from salts and naturally occurring radioactive materials, such as uranium, radium and radon from the rapidly expanding fracking industry.

The new findings and recommendations come amid significant controversy over the benefits and environmental risks associated with fracking. The practice, which involves pumping fluids underground into shale formations to release pockets of natural gas that are then pumped to the surface, creates jobs and promotes energy independence but also produces a substantial amount of wastewater.

In light of their review of multiple possible water pollution scenarios, the authors say future research should focus mainly on wastewater disposal. “Even in a best case scenario, an individual well would potentially release at least 200 m3 of contaminated fluids,” according to doctoral student Daniel Rozell, P.E., and Dr. Sheldon Reaven, Associate Professor and Director of Energy and Environmental Systems Concentration in the Department of Technology and Society, Stony Brook University. The scientists present their findings in a paper titled “Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale,” which appears in the August 2012 issue of the journal Risk Analysis, published by the Society for Risk Analysis.

Disposal of the large amounts of fracking well wastewater that is expected to be generated in the Marcellus Shale region—which covers approximately 124,000 square kilometers from New York to West Virginia—presents risks from salts and radioactive materials that are “several orders of magnitude larger” than for other potential water pollution pathways examined in the new study. Other water pollution pathways studied include: a tanker truck spilling its contents while transporting fluids used in the drilling process going to or from a well site; a well casing failing and leaking fluids to groundwater; fracturing fluids traveling through underground fractures into drinking water; and drilling site spills at the surface caused by improper handling of fluids or leaks from storage tanks and retention ponds.

The disposal of used hydraulic fracturing fluids through industrial wastewater treatment facilities can lead to elevated pollution levels in rivers and streams because many treatment facilities “are not designed to handle hydraulic fracturing wastewater containing high concentrations of salts or radioactivity two or three orders of magnitude in excess of federal drinking water standards,” according to the researchers. The wastewater disposal risks dwarf the other water risks, although the authors say “a rare, but serious retention pond failure could generate a very large contaminated water discharge to local waters.”

In trying to understand the likelihood and consequences of water contamination in the Marcellus Shale region from fracking operations, Rozell and Reavan use an analytical approach called “probability bounds analysis” that is suitable “when data are sparse and parameters highly uncertain.” The analysis delineates best case/worse case scenarios that risk managers can use “to determine if a desirable or undesirable outcome resulting from a decision is even possible,” and to assess “whether the current state of knowledge is appropriate for making a decision,” according to the authors.

The authors note that “any drilling or fracturing fluid is suspect for the purposes of this study” because “even a benign hydraulic fracturing fluid is contaminated once it comes into contact with the Marcellus Shale.” Sodium, chloride, bromide, arsenic, barium and naturally occurring radioactive materials are the kinds of contaminants that occur in fracking well wastewater.

If only 10 percent of the Marcellus Shale region was developed, that could equate to 40,000 wells. Under the best-case median risk calculation that Rozell and Reavan developed, the volume of contaminated wastewater “would equate to several hours flow of the Hudson River or a few thousand Olympic-sized swimming pools.” That represents a “potential substantial risk” that suggests additional steps should be taken to lower the potential for contaminated fracking fluid release, the authors say. Specifically, they suggest that “regulators should explore the option of mandating alternative fracturing procedures and methods to reduce the wastewater usage and contamination from shale gas extraction in the Marcellus Shale.” These would include various alternatives such as nitrogen-based or liquefied petroleum gas fracturing methods that would substantially reduce the amount of wastewater generated.

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is broadly defined to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level.

Contact: Steve Gibb, 202.422.5425 to arrange an interview with the author(s). Note to editors: The complete study is available upon request from Steve Gibb or here:

Steve Gibb | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>