Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human impacts of rising oceans will extend well beyond coasts

31.05.2011
Identifying the human impact of rising sea levels is far more complex than just looking at coastal cities on a map.

Rather, estimates that are based on current, static population data can greatly misrepresent the true extent – and the pronounced variability – of the human toll of climate change, say University of Wisconsin-Madison researchers.

"Not all places and not all people in those places will be impacted equally," says Katherine Curtis, an assistant professor of community and environmental sociology at UW-Madison.

In a new online report, which will publish in an upcoming issue of the peer-reviewed journal Population and Environment, Curtis and her colleague Annemarie Schneider examine the impacts of rising oceans as one element of how a changing climate will affect humans. "We're linking economic and social vulnerability with environmental vulnerability to better understand which areas and their populations are most vulnerable," Curtis says.

They used existing climate projections and maps to identify areas at risk of inundation from rising sea levels and storm surges, such as the one that breached New Orleans levees after Hurricane Katrina, then coupled those vulnerability assessments with projections for future populations.

It's a deceptively challenging process, the authors say. "Time scales for climate models and time scales for human demography are completely different," explains Schneider, part of the Center for Sustainability and the Global Environment at UW-Madison's Nelson Institute for Environmental Studies. "Future climate scenarios typically span 50 to 100 years or more. That's unreasonable for demographic projections, which are often conducted on the order of decades."

The current study works to better align population and climate data in both space and time, allowing the researchers to describe social and demographic dimensions of environmental vulnerability.

The analysis focuses on four regions they identified as highly susceptible to flooding: the tip of the Florida peninsula, coastal South Carolina, the northern New Jersey coastline, and the greater Sacramento region of northern California, areas that span a range of population demographics. (New Orleans was not included as a study site due to major population changes since the 2000 census.)

With help from the UW-Madison Applied Population Laboratory, the researchers used 2000 census data and current patterns of population change to predict future population demographics in those areas. By 2030, they report, more than 19 million people will be affected by rising sea levels just in their four study areas.

And many of those people may be in unexpected places. The case studies clearly reveal the importance of considering people's patterns of movement.

"No area is completely isolated, and migration networks are one of the ways we think about connections across places. Through these networks, environmental impacts will have a ripple effect," Curtis says.

In one example, if Florida floods, New York and Los Angeles will feel the effects – in 2000, 14,000 people from three New York counties and another 5,500 from Los Angeles moved to Miami-Dade County, Fla. Under the environmental scenarios in the study, those people would have to remain where they started or move elsewhere, consequently shifting their resources and needs to new sites.

Curtis and Schneider designed their approach with an eye toward helping local authorities identify and best respond to their own needs.

"Adaptation and mitigation strategies are developed and implemented at a local level. Part of the problem with large-scale population and environmental impact estimates is that they mask the local variation that is necessary in order for a local area to effectively respond," Curtis says.

A population's demographic, social, and economic profile affects the ways in which people can respond to local disaster, she adds. For example, children or elderly require a different approach to evacuation and resettlement than a largely working-age population, while workers from the agricultural lands of northern California will face different post-displacement labor challenges than those from the industrial corridor of New Jersey.

Even using rough estimates of sea level rise, their analysis makes clear that planning ahead for mitigation and adaptation will be crucial, Schneider says.

"As we anticipate future events, future natural disasters, we've learned how dramatic it can be – and there are things that can be done in advance to mitigate the extent of damage in a location," Curtis says.

The work was supported by the UW-Madison Graduate School and the Wisconsin Agricultural Experiment Station.

-- Jill Sakai, jasakai@wisc.edu, 608-262-9772

CONTACT: Katherine Curtis, 608-890-1900, kcurtis@ssc.wisc.edu; Annemarie Schneider, 608-890-0557, aschneider4@wisc.edu

Katherine Curtis | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>