Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to detect water contamination in situ?

22.09.2016

Scientists from Tomsk Polytechnic University have developed a device for the rapid analysis of liquids on the content of hazardous substances - such as heavy metals. Polytechnicers use a method based on polymer optodes - very small plastic matrices that can be made sensitive to specific substances by means of special reagents.

The matrices change color and its intensity depending on the concentration of the substance. The device is mobile, can carry out analysis in situ even at low temperatures, and its cost is many times less than the price of a spectrophotometer - the most used device for chemical analysis.

“The device is based on polymethacrylate sensors - transparent pieces of plastic with thickness of 1 mm and a size of 3x3 mm. The pores of matrices serve as receptacles, where various chemical reactions can undergo. If a matrix is handled with a special reagent it becomes an optode sensitive to a particular substance. We plunge this optode into the water to test it or simply drip a few drops on it, and it changes its color. Hence, there is a required element.

Sergey Muravyov, the scientific supervisor of the project, head of the TPU International Laboratory Advanced Measurements, says: "The more intense the color is, the higher is the concentration of the substance,” 

For example, if water contains silver optode turns purple-red. According to the scientist, such a method can detect substances even at very low concentrations in water.

“You dip optode into the water and then load it into the device analyzer. There a special electronic device receives optical signal and converts it into an electric three-channel RGB-signal.

After this signal processing the device outputs the data in digital form on the concentration of the searched substance. The analysis takes place immediately,”

- the project manager says.

This method allows the detection of almost all metals, organic materials and various pharmacological agents in water.

“Our method works with those substances with which interaction leads to color change. Indeed, this is not the whole range of substances. But universal methods do not exist. Today, the most widely used method for chemical analysis is spectrophotometry. A modern spectrophotometer costs about 500 thousand rubles, and it is a bulky stationary device. Our device can achieve the same quality of measurements, but it is compact and can cost about 30 thousand rubles at the market placement,” - he says.

Such a device for rapid analysis is useful for environmental and related services personnel of industrial enterprises. For example, oil companies can use the device for the determination of the tracers in the drilling fluid.

“To date, we have prepared a prototype device, - Sergey Muravyov says. - Now we have set ourselves the task to use this method for a multi-component analysis. The fact is that the reagents that configure optode to a definite substance are sensitive to a few substances.”

Let us add, in 2014 the project research team has received a grant of the Russian Scientific Foundation for up to three years.

The project was funded with the three-year grant of the Russian Scientific Foundation in 2014.

http://tpu.ru/en/news-events/930/

For further information, please contact:

Kristina Nabokova

nkb@tpu.ru

Kristina Nabokova | AlphaGalileo

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>