Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to detect water contamination in situ?

22.09.2016

Scientists from Tomsk Polytechnic University have developed a device for the rapid analysis of liquids on the content of hazardous substances - such as heavy metals. Polytechnicers use a method based on polymer optodes - very small plastic matrices that can be made sensitive to specific substances by means of special reagents.

The matrices change color and its intensity depending on the concentration of the substance. The device is mobile, can carry out analysis in situ even at low temperatures, and its cost is many times less than the price of a spectrophotometer - the most used device for chemical analysis.

“The device is based on polymethacrylate sensors - transparent pieces of plastic with thickness of 1 mm and a size of 3x3 mm. The pores of matrices serve as receptacles, where various chemical reactions can undergo. If a matrix is handled with a special reagent it becomes an optode sensitive to a particular substance. We plunge this optode into the water to test it or simply drip a few drops on it, and it changes its color. Hence, there is a required element.

Sergey Muravyov, the scientific supervisor of the project, head of the TPU International Laboratory Advanced Measurements, says: "The more intense the color is, the higher is the concentration of the substance,” 

For example, if water contains silver optode turns purple-red. According to the scientist, such a method can detect substances even at very low concentrations in water.

“You dip optode into the water and then load it into the device analyzer. There a special electronic device receives optical signal and converts it into an electric three-channel RGB-signal.

After this signal processing the device outputs the data in digital form on the concentration of the searched substance. The analysis takes place immediately,”

- the project manager says.

This method allows the detection of almost all metals, organic materials and various pharmacological agents in water.

“Our method works with those substances with which interaction leads to color change. Indeed, this is not the whole range of substances. But universal methods do not exist. Today, the most widely used method for chemical analysis is spectrophotometry. A modern spectrophotometer costs about 500 thousand rubles, and it is a bulky stationary device. Our device can achieve the same quality of measurements, but it is compact and can cost about 30 thousand rubles at the market placement,” - he says.

Such a device for rapid analysis is useful for environmental and related services personnel of industrial enterprises. For example, oil companies can use the device for the determination of the tracers in the drilling fluid.

“To date, we have prepared a prototype device, - Sergey Muravyov says. - Now we have set ourselves the task to use this method for a multi-component analysis. The fact is that the reagents that configure optode to a definite substance are sensitive to a few substances.”

Let us add, in 2014 the project research team has received a grant of the Russian Scientific Foundation for up to three years.

The project was funded with the three-year grant of the Russian Scientific Foundation in 2014.

http://tpu.ru/en/news-events/930/

For further information, please contact:

Kristina Nabokova

nkb@tpu.ru

Kristina Nabokova | AlphaGalileo

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>