Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nanoparticles flow through the environment

12.05.2016

Carbon nanotubes remain attached to materials for years while titanium dioxide and nanozinc are rapidly washed out of cosmetics and accumulate in the ground. Researchers from the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64) have developed a new model to track the flow of the most important nanomaterials in the environment.

How many man-made nanoparticles make their way into the air, earth or water? In order to assess these amounts, a group of researchers led by Bernd Nowack from Empa in St. Gallen has developed a computer model as part of the National Research Programme "Opportunities and Risks of Nanomaterials" (NRP 64).(*) “Our estimates offer the best available data at present about the environmental accumulation of nanosilver, nanozinc, nano-tinanium dioxide and carbon nanotubes”, says Nowack.


Cosmetics and tennis racquets

In contrast to the static calculations hitherto in use, their new, dynamic model does not just take into account the significant growth in the production and use of nanomaterials, but also makes provision for the fact that different nanomaterials are used in different applications. For example, nanozinc and nano-titanium dioxide are found primarily in cosmetics.

Roughly half of these nanoparticles find their way into our waste water within the space of a year, and from there they enter into sewage sludge. Carbon nanotubes, however, are integrated into composite materials and are bound in products such as which are immobilized and are thus found for example in tennis racquets and bicycle frames. It can take over ten years before they are released, when these products end up in waste incineration or are recycled.

39,000 metric tons of nanoparticles

The researchers involved in this study come from Empa, ETH and the University of Zurich. They use an estimated annual production of nano-titanium dioxide across Europe of 39,000 metric tons – considerably more than the total for all other nanomaterials. Their model calculates how much of this enters the atmosphere, surface waters, sediments and the earth, and accumulates there.

In the EU, the use of sewage sludge as fertiliser (a practice forbidden in Switzerland) means that nano-titanium dioxide today reaches an average concentration of 61 micrograms per kilo in the affected ground.

Knowing the degree of accumulation in the environment is only the first step in the risk assessment of nanomaterials, however. Now this data has to be compared with ecotoxicological test results and the statutory thresholds, says Nowack. A risk assessment has not been carried out with his new model until now. Earlier work with data from a static model showed, however, that the concentrations determined for all four nanomaterials investigated is not expected to have any impact on the environment.(**)

But in the case of nanozinc at least, its concentration in the environment is approaching the critical level. This is why this particular nanomaterial has to be given priority in future ecotoxicological studies – even though nanozinc is produced in smaller quantities than nano-titanium dioxide. Furthermore, ecotoxicological tests have until now been carried out primarily with freshwater organisms. The researchers conclude that complementary investigations using soil-dwelling organisms is a priority.

(*) T. Y. Sun et al.: Dynamic probabilistic Modelling of Environmental Emissions of Engineered Nanomaterials. Environmental Science & Technology (2016); doi: 10.1021/acs.est.5b05828

(**) C. Coll et al.: Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology (2016); doi: 10.3109/17435390.2015.1073812

(Journalists can obtain PDF versions of both publications from the SNSF: com@snf.ch)

Opportunities and Risks of Nanomaterials (NRP 64)

The Swiss National Science Foundation was commissioned by the Federal Council to run the National Research Programme ‘Opportunities and Risks of Nanomaterials’ (NRP 64). Its goal is to bridge the gaps in our current knowledge of nanomaterials with regard to their manufacture, use and disposal. The overall final recommendations of NFP 64 will be published in summary reports in 2017. www.nfp64.ch

Contact

Prof. Dr. Bernd Nowack
Empa
Environmental Risk Assessment and Management Group
Lerchenfeldstrasse 5
CH-9014 St. Gallen
Tel.: +41 58 765 76 92
E-Mail: nowack@empa.ch

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-160512-press-release-ho... - Press release online
http://p3.snf.ch/project-131241 - Project in the SNSF research database P3
http://www.nfp64.ch/en/projects/module-environment/project-nowack - NRP 64 - Modelling of nanomaterials in the environment
https://twitter.com/snsf_ch

Media - Abteilung Kommunikation | Schweizerischer Nationalfonds SNF

Further reports about: Nanoparticles SNSF bicycle frames nanomaterials sewage sludge waste water

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>