Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hospital scanner could curb nuclear waste threat

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

A team of scientists from the Universities of Manchester and Leeds have joined forces with experts in nuclear medicine at Manchester Royal Infirmary, using medical gamma-ray cameras to track radioactive isotopes in soil samples from a US civil nuclear site.

This is the first time the technique, which is used in hospitals for heart, bone and kidney scanning, has been used to study the environmental behaviour of nuclear waste – and its success could help scientists find new ways of using bacteria to control the spread of radioactivity.

Radioactive isotopes of the element technetium (Tc) are produced in bulk by nuclear facilities, while a specific isotope of Tc with a very short life is routinely used as a medical tracer in human bodies.

Nuclear fission of Uranium has released tonnes of Tc from nuclear facilities over the past decades, with the element remaining radioactive for thousands of years.

But although the short lived medical isotope is chemically indistinguishable from that in long lived waste, it can be used safely in tests.

In the study researchers from The University of Manchester, led by Prof Jon Lloyd, took soil samples from the Oak Ridge nuclear facility in the United States and successfully tracked the movement of medical Tc through the soil.

Scientists at The University of Leeds were then asked to verify the observations using a special microscope technique called Transmission electron microscopy (TEM).

With the help of DNA analysis the Manchester team confirmed that certain microbes – and particularly some that use ferric iron for energy – can fix Tc in place in soils.

Researchers found that nearly all the Tc remained fixed when ferric iron was present with these 'iron-reducing' bacteria.

This finding itself is not new – Professor Lloyd and his colleagues had previously reported that microbes in laboratory cultures could perform this role in fixing Tc.

But the researchers' success in using the gamma camera could see the technique being used to probe how Tc and ferric iron move together in far more complex soil systems more representative of the 'real world' – helping develop future remediation techniques.

Prof Jon Lloyd from the School of Earth, Atmospheric and Environmental Science (SEAES) at The University of Manchester, said: "Using this medical scanning technique we were able to explore, in real time, the mobility of one of the most problematic and mobile radionuclides in sediments.

"Our success will allow scientists to accurately monitor the success of new biological methods in trapping radioactive elements in sediments and stopping them spreading further into the natural environment."

The findings coincide with the opening of a new Research Centre for Geological Disposal at The University, supported by a £1.4m endowment from BNFL, while a new Nuclear Medicine Centre recently opened at the Manchester Royal Infirmary, as part of the £500m Central Manchester Hospitals development.

Prof Lloyd added: "Investment in these two diverse but important areas of scientific research has helped bring about interesting and unexpected research findings that could ultimately have great benefit for society."

Notes to editors

Prof Lloyd is available for comment by arrangement. For more information please contact Alex Waddington, Media Relations Officer, UoM, Tel 0161 275 8387 / 07717 881569.

The research was published in a special edition of the American Chemical Society journal Environmental Science and Technology. A copy of the paper, 'Probing the Biogeochemical Behaviour of Technetium Using a Novel Nuclear Imaging Approach' is available on request.

Alex Waddington | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>