Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honduran earthquake of 2009 destroyed half of coral reefs of Belizean Barrier Reef lagoon

13.09.2011
Earthquake underscores need for conservation planning to take into account infrequent natural disasters

Earth's coral reefs have not been faring well in recent decades, facing multiple threats from pollution, disease, elevated water temperatures, and overfishing. Often referred to as the "rainforests of the Sea," coral reefs support a wide variety of marine life, help protect shorelines, and contribute significantly to tourism and the fishing industry. A new study looks at a rare but catastrophic impact on reefs: the damage caused by natural disasters such as an earthquakes.

In May of 2009, a powerful, magnitude-7.3 earthquake shook the western Caribbean, causing lagoonal reefs in Belize, 213 kilometers (132 miles) from the epicenter, to avalanche and slide into deeper water. As reported in a preprint article of Ecology, a journal of the Ecological Society of America, Richard Aronson of the Florida Institute of Technology and colleagues analyzed data that suggest how the history of the reef will influence its recovery.

During the quarter-century before the earthquake struck, the reefs had gone through mass mortalities of two sequentially dominant coral species. Novel events in their own right, these mass mortalities were instantly "rendered moot" on half the reefs, which were destroyed when the earthquake hit.

Aronson and colleagues' work focused on a 375-square-kilometer (144-square-mile) area of the Belizean Barrier Reef, which they monitored from 1986 to 2009. The group revisited 21 sites in 2010 to determine the impacts of the earthquake. They found that approximately half the reef slopes had slabbed off and slid into deeper water. Only sediment and the skeletal debris of corals remained.

Beginning in 1986, a bacterial infection called white-band disease killed virtually all the then-dominant staghorn coral (Acropora cervicornis) in the study area. By 1995, lettuce coral (Agaricia tenuifolia) had taken over the number-one spot. But when high temperatures from the 1998 El Nino–Southern Oscillation, which were aggravated by global climate change, caused mass coral bleaching, lettuce coral disappeared. An encrusting sponge (Chondrilla caribensis) colonized its skeletal remains, along with seaweed. What's astonishing about this series of events, say the authors, is that—as evidenced by radiocarbon-dating of reef cores—staghorn coral had dominated the reefs for nearly 4,000 years.

"The prior losses of both staghorn and lettuce corals drastically weakened the resilience of the coral assemblages on the reef slopes," says lead author Aronson. "In other words, if neither white-band disease nor bleaching had occurred, staghorn coral might have continued its millennial-scale dominance of the areas not destroyed by the quake."

The authors project that recovery to a coral-dominated state is unlikely in the near future, because corals in the undamaged areas had been killed previously. The situation is unlikely to change unless the way we manage reef resources improves dramatically.

Marine protected areas are meant to sustain an area's ecological, cultural, and economic benefits for future generations. Yet creating and managing these areas is easier said than done. Aronson and colleagues contend that extreme events, such as earthquakes, lava flows, and tsunamis, should be taken into account when determining the size of and managing such protected areas.

"The rhetoric of conservation often includes the appeal of preserving ecosystems so that our children's children can enjoy Nature's bounty," says Aronson. "That translates to about 200 years, but ecosystems last far longer than three generations of their human stewards. We challenge marine conservationists to plan on a millennial scale. Rare, catastrophic events are the backdrop to human actions. Those rare events should be factored into determining the sizes of marine reserves and their levels of protection, whatever else might be expected to happen along the way. After all, a once-in-a-thousand-year disaster could still occur next week."

Ecology is ranked 16 (out of 127 journal titles) in the Ecology category with an impact factor of 4.411.

To subscribe to ESA press releases, access all of the Society's journals or reach experts in ecological science, contact Nadine Lymn, ESA Director of Public Affairs, at nadine@esa.org or 202-833-8773 x 205.

The Ecological Society of America is the world's largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four print journals—and one online-only, open-access journal Ecosphere—and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org or find experts in ecological science at http://www.esa.org/pao/rrt.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>