Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honduran earthquake of 2009 destroyed half of coral reefs of Belizean Barrier Reef lagoon

13.09.2011
Earthquake underscores need for conservation planning to take into account infrequent natural disasters

Earth's coral reefs have not been faring well in recent decades, facing multiple threats from pollution, disease, elevated water temperatures, and overfishing. Often referred to as the "rainforests of the Sea," coral reefs support a wide variety of marine life, help protect shorelines, and contribute significantly to tourism and the fishing industry. A new study looks at a rare but catastrophic impact on reefs: the damage caused by natural disasters such as an earthquakes.

In May of 2009, a powerful, magnitude-7.3 earthquake shook the western Caribbean, causing lagoonal reefs in Belize, 213 kilometers (132 miles) from the epicenter, to avalanche and slide into deeper water. As reported in a preprint article of Ecology, a journal of the Ecological Society of America, Richard Aronson of the Florida Institute of Technology and colleagues analyzed data that suggest how the history of the reef will influence its recovery.

During the quarter-century before the earthquake struck, the reefs had gone through mass mortalities of two sequentially dominant coral species. Novel events in their own right, these mass mortalities were instantly "rendered moot" on half the reefs, which were destroyed when the earthquake hit.

Aronson and colleagues' work focused on a 375-square-kilometer (144-square-mile) area of the Belizean Barrier Reef, which they monitored from 1986 to 2009. The group revisited 21 sites in 2010 to determine the impacts of the earthquake. They found that approximately half the reef slopes had slabbed off and slid into deeper water. Only sediment and the skeletal debris of corals remained.

Beginning in 1986, a bacterial infection called white-band disease killed virtually all the then-dominant staghorn coral (Acropora cervicornis) in the study area. By 1995, lettuce coral (Agaricia tenuifolia) had taken over the number-one spot. But when high temperatures from the 1998 El Nino–Southern Oscillation, which were aggravated by global climate change, caused mass coral bleaching, lettuce coral disappeared. An encrusting sponge (Chondrilla caribensis) colonized its skeletal remains, along with seaweed. What's astonishing about this series of events, say the authors, is that—as evidenced by radiocarbon-dating of reef cores—staghorn coral had dominated the reefs for nearly 4,000 years.

"The prior losses of both staghorn and lettuce corals drastically weakened the resilience of the coral assemblages on the reef slopes," says lead author Aronson. "In other words, if neither white-band disease nor bleaching had occurred, staghorn coral might have continued its millennial-scale dominance of the areas not destroyed by the quake."

The authors project that recovery to a coral-dominated state is unlikely in the near future, because corals in the undamaged areas had been killed previously. The situation is unlikely to change unless the way we manage reef resources improves dramatically.

Marine protected areas are meant to sustain an area's ecological, cultural, and economic benefits for future generations. Yet creating and managing these areas is easier said than done. Aronson and colleagues contend that extreme events, such as earthquakes, lava flows, and tsunamis, should be taken into account when determining the size of and managing such protected areas.

"The rhetoric of conservation often includes the appeal of preserving ecosystems so that our children's children can enjoy Nature's bounty," says Aronson. "That translates to about 200 years, but ecosystems last far longer than three generations of their human stewards. We challenge marine conservationists to plan on a millennial scale. Rare, catastrophic events are the backdrop to human actions. Those rare events should be factored into determining the sizes of marine reserves and their levels of protection, whatever else might be expected to happen along the way. After all, a once-in-a-thousand-year disaster could still occur next week."

Ecology is ranked 16 (out of 127 journal titles) in the Ecology category with an impact factor of 4.411.

To subscribe to ESA press releases, access all of the Society's journals or reach experts in ecological science, contact Nadine Lymn, ESA Director of Public Affairs, at nadine@esa.org or 202-833-8773 x 205.

The Ecological Society of America is the world's largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four print journals—and one online-only, open-access journal Ecosphere—and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org or find experts in ecological science at http://www.esa.org/pao/rrt.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>