Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Home and Away: Are Invasive Plant Species Really That Special?

02.02.2011
Invasive plants are a major environmental problem--but how abundant are they?

Invasive plant species are a serious environmental, economic and social problem worldwide. Their abundance can lead to lost native biodiversity and ecosystem functions, such as nutrient cycling.

Despite substantial research, however, little is known about why some species dominate new habitats over native plants that technically should have the advantage.

A common but rarely tested assumption, say biologists, is that these plants behave in a special way, making them more abundant when introduced into communities versus native plants that are already there.

If true, it would mean that biosecurity screening procedures need to address how species will behave once introduced to nonnative communities--very difficult to get right, researchers have found.

Scientists in a global collaboration called the Nutrient Network tested this "abundance assumption" for 26 plant species at 39 locations on four continents and found numerous problems with it.

The results are published in a paper in the current issue of the journal Ecology Letters.

"Predicting success of invading species is difficult and uncertain, but very important," says Henry Gholz, program director in the National Science Foundation (NSF)'s Division of Environmental Biology, which funds the Nutrient Network.

"The Nutrient Network has enabled a field test of one of the most basic assumptions of current models," says Gholz, "and found it lacking. But, the results could lead to better predictions in the future."

Twenty of the 26 species examined had a similar or lower abundance at introduced versus native sites.

"The results suggest that invasive plants have a similar or lower abundance at both introduced and native ranges, and that increases in species abundance are unusual," says scientist Jennifer Firn from Queensland University of Technology and CSIRO, Australia, the lead author of the paper's 36 co-authors.

"Instead, abundance at native sites can predict abundance at introduced sites, a criterion not currently included in biosecurity screening programs."

Sites in New Zealand and Switzerland, for example, were similar in species composition, sharing--in some cases--more than 10 species, all with similar abundances.

The results are the first to be published from the Nutrient Network.

The Nutrient Network is led by individual researchers at the various sites, and coordinated through NSF funding to biologists Elizabeth Borer and Eric Seabloom of the University of Minnesota.

"The Nutrient Network is the only collaboration of its kind where individual researchers have set up the same experiment at sites around the world," says Borer.

For three years scientists have been collecting population, community and ecosystem-scale plant data, including species-specific distribution and abundance data, with standardized protocols across dozens of sites.

"The experimental design used is simple," says Borer, "but it's one that provides a new, global-scale approach for addressing many critical ecological issues.

"It will tell us information we need to know about invasive species and changing climates."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Related Websites
NSF Nutrient Network: http://nutnet.umn.edu
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>