Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hind Wings Help Butterflies Make Swift Turns to Evade Predators

12.01.2009
New tires allow race cars to take tight turns at high speeds. Hind wings give moths and butterflies similar advantages: They are not necessary for basic flight but help these creatures take tight turns to evade predators.

"To escape a predator, you don't have to be fast, you just have to be more erratic," said Tom Eisner, a world authority on animal behavior, ecology and evolution and the Jacob Gould Schurman Professor Emeritus of Chemical Ecology at Cornell. Eisner is co-author of a study on butterfly wings recently published in the Proceedings of the National Academy of Sciences (105: 43).

The study proposes that in the course of evolution, the ability of butterflies to evade predators became linked with bright coloring, as an added protection. In evolutionary terms, gaudy colors are usually a sign to such predators as birds that a prey species has a protective quality, such as a bad taste or great agility, and that chasing them isn't worth the energy. Anyone who has tried to net a colorful butterfly knows they are hard to catch, but this is the first study to show that a butterfly's hind wings are responsible for making them evasive.

Eisner and the paper's lead author, Benjamin Jantzen, (M.S. physics '02), a doctoral student in philosophy of science at Carnegie Mellon University, clipped off the hind wings of butterflies and then filmed their flight using two cameras to get three-dimensional views of their flight trajectories; then they analyzed and plotted on a computer the insects' flight velocity, acceleration, how fast they changed direction, the curvature of their path and more.

They found that clipping the back wings did not affect basic flight, but "we were able to show that removing the hind wings cut their turning acceleration in half," said Jantzen. The butterfly's hind wings scoop air and provide extra force to quickly turn when chased.

Eisner added that some butterflies have other qualities that are linked with their bright coloring as a sign for predators not to eat them. Monarchs also taste bad, for example. Other studies have shown that distasteful butterflies are slower and easier to catch. Butterfly wings are also scaly, slipping easily from a bird's bill, and if the butterfly is caught it's found to be "mostly wrapper and very little candy," said Eisner.

"The wings are also colorful advertising for the whole group," said Jantzen. "The colors say, we are butterflies, don't bother to chase us, because you won't catch us."

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Jan09/Eisner.kr.html

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>