Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hind Wings Help Butterflies Make Swift Turns to Evade Predators

12.01.2009
New tires allow race cars to take tight turns at high speeds. Hind wings give moths and butterflies similar advantages: They are not necessary for basic flight but help these creatures take tight turns to evade predators.

"To escape a predator, you don't have to be fast, you just have to be more erratic," said Tom Eisner, a world authority on animal behavior, ecology and evolution and the Jacob Gould Schurman Professor Emeritus of Chemical Ecology at Cornell. Eisner is co-author of a study on butterfly wings recently published in the Proceedings of the National Academy of Sciences (105: 43).

The study proposes that in the course of evolution, the ability of butterflies to evade predators became linked with bright coloring, as an added protection. In evolutionary terms, gaudy colors are usually a sign to such predators as birds that a prey species has a protective quality, such as a bad taste or great agility, and that chasing them isn't worth the energy. Anyone who has tried to net a colorful butterfly knows they are hard to catch, but this is the first study to show that a butterfly's hind wings are responsible for making them evasive.

Eisner and the paper's lead author, Benjamin Jantzen, (M.S. physics '02), a doctoral student in philosophy of science at Carnegie Mellon University, clipped off the hind wings of butterflies and then filmed their flight using two cameras to get three-dimensional views of their flight trajectories; then they analyzed and plotted on a computer the insects' flight velocity, acceleration, how fast they changed direction, the curvature of their path and more.

They found that clipping the back wings did not affect basic flight, but "we were able to show that removing the hind wings cut their turning acceleration in half," said Jantzen. The butterfly's hind wings scoop air and provide extra force to quickly turn when chased.

Eisner added that some butterflies have other qualities that are linked with their bright coloring as a sign for predators not to eat them. Monarchs also taste bad, for example. Other studies have shown that distasteful butterflies are slower and easier to catch. Butterfly wings are also scaly, slipping easily from a bird's bill, and if the butterfly is caught it's found to be "mostly wrapper and very little candy," said Eisner.

"The wings are also colorful advertising for the whole group," said Jantzen. "The colors say, we are butterflies, don't bother to chase us, because you won't catch us."

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/stories/Jan09/Eisner.kr.html

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>