Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High tech tools, top-notch science and serendipity play part in finding 23-mile long plume off Florida’s Treasure Coast

14.06.2010
A team of dedicated South Florida researchers from the University of Miami’s Cooperative Institute for Marine and Atmospheric Studies (CIMAS) and the National Oceanic and Atmospheric Administration’s Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML) returning from the Gulf were determined to check on whether oil was, as predicted, being pulled into the Loop Current and carried toward the Dry Tortugas.

The University of Miami’s 96-foot catamaran the RV/F.G. Walton Smith had just completed a two-week National Science Foundation (NSF) sponsored cruise sampling the deep submerged plumes near the Deepwater Horizon well site. NOAA/AOML offered to pay for a few additional days, but the ship which is part of the University National Laboratory System, had to return to Miami on its tight schedule. The best they could do was extend the trip home by 18 hours.

Using funding provided through CIMAS, a team was rapidly assembled that included UM and CIMAS oceanographers Tom Lee and Nelson Melo, as well as a group of scientists led by Michelle Wood, director of the NOAA/AOML’s Ocean Chemistry Division. A sampling plan was pulled together using particle trajectories calculated by the UM Rosenstiel School of Marine & Atmospheric Science’s Coastal Shelf Modeling Group, in combination with information provided by Roffer’s Ocean Fishing Forecast Service (ROFFS) and remotely sensed images from UM’s Center for Southeastern Tropical Advanced Remote Sensing (CSTARS). Using these sophisticated tools, the team decided that the most likely pathway for oil to reach the Florida Keys was for it to be pulled into a counterclockwise rotating frontal eddy in the northeast corner of the Loop Current, and then south along the eastern frontal zone of the Loop Current to the Dry Tortugas.

They set out, borrowing surveying equipment from NSF scientists who were leaving the ship, including geological oceanographer Vernon Asper of the University of Southern Mississippi and Samantha Joye from the University of Georgia. As they traveled into the eddy field they saw areas of sheen, but no tar balls.

Changing course to the south, however they found an area of strong flow convergence within a southward flowing jet that resulted from flow being pulled into the eddy. Knowing that this was just the type of oceanographic feature that would concentrate any floating material, including oil, they followed it. At about the same time a U.S. Coast Guard flight that had been sent to visually survey the area spotted what they thought could be an oil slick in the area and contacted the scientists aboard the Walton Smith to have the ship get a closer look at the slick.

“As we approached, we found an extensive oil slick that stretched about 20 nm (20 miles) along the southward flowing jet which merged with the northern front of the Loop Current. The slick was made up of tar balls shaped like pancakes that went from the size of a dime to about 6 inches in diameter,” said Tom Lee, UM Research Professor Emeritus and CIMAS scientist. “The combination of models and satellite images, along with our shipboard observations and ROFFS daily analysis had helped us to identify and study this previously unidentified oil plume located off Florida’s southwest coast and heading toward the Tortugas.”

Scientists quickly set up net tows and lowered a CTD (Conductivity, Temperature and Depth) instrument equipped with oil sampling devices into the water, collecting samples of both the oil and saltwater in the area. As they headed further south they kept looking for other tendrils oil, but increased winds made spotting tell-tale sheen more difficult. As a result they could not confirm the exact length of this southern arm of the oil slick, which they had previously inferred from their data. Samples have been provided to federally sanctioned laboratories to confirm the source of materials gathered.

“The good news is that the various approaches we are using to project its pathway seem to be yielding similar answers and guiding us properly. We need to maintain our vigilance and expand our efforts to determine the degree of risk to unique downstream resources like the Dry Tortugas and Florida Keys National Marine Sanctuary, which are vital natural environments that we need to protect,” said Peter Ortner, UM Marine Biology and Fisheries professor and director of CIMAS. “NOAA Cooperative Institutes, like CIMAS, continue to stand ready to assist their federal partners with the best available science to ensure that response and restoration resources are deployed as proactively and responsibly as possible during this national emergency.”

Earlier this month the National Oceanic and Atmospheric Administration (NOAA) announced its selection of UM to continue to lead its CIMAS partnership, which has been in place since 1977 to improve our understanding of climate, hurricanes, and marine ecosystems along the southeastern U.S. coast. The renewed partnership allows investigators from UM and partner institutions to receive NOAA, as well as other federal agency support for research projects, and facilitates collaboration with NOAA scientists at NOAA/AOML, National Hurricane Center, Southeast Fisheries Science Center, as well as other NOAA facilities and 18 Cooperative Institutes nationwide.

About the University of Miami

The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. For more information, please visit www.rsmas.miami.edu/oil-spill

Barbra Gonzalez | University of Miami
Further information:
http://www.rsmas.miami.edu
http://www.rsmas.miami.edu/oil-spill

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>