Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New high-resolution carbon mapping techniques provide more accurate results

15.03.2011
A team of scientists from the Carnegie Institution for Science's Department of Global Ecology and the USDA Forest Service's Pacific Southwest Research Station (PSW) has developed new, more accurate methods for mapping carbon in Hawaii's forests. Their research appears in an online issue of the journal Frontiers in Ecology and the Environment.

The growing market for private and public entities to purchase carbon offsets has led to a need to find better monitoring techniques to accurately quantify the amount of carbon (C) held in our nation's forests.

Combining field measurements, airborne Light Detection And Ranging (LiDAR)–based observations, and satellite-based imagery, the team developed a 30-meter-resolution map of aboveground carbon density spanning 40 vegetation types found on the one million-hectare Island of Hawaii. The team estimated a total of 28.3 million tons of carbon sequestered in aboveground woody vegetation on the island, which is 56 percent lower than estimates by the Intergovernmental Panel on Climate Change that were not intended to resolve carbon variation at fine spatial scales. The approach reveals fundamental ecological controls over carbon storage, including the role of climate, introduced species, and land-use change, and provides a fourfold decrease in regional costs of carbon measurement over using only those samples collected in the field.

This new approach moves well beyond merely sampling the carbon contained in forests of a given region and/or forest type with relatively few forest inventory plots. Now, these researchers can—by correlating plot-based estimates of forest C mass with LiDAR measures of canopy structure—actually measure forest C across a wide diversity of environmental and forest conditions.

"This research demonstrates that ecosystem C stocks can be accurately assessed in highly variable environments across extensive geographic regions," says Dr. R. Flint Hughes, a PSW research ecologist with the Ecosystem Function and Health Program, who co-authored the study. "We are very excited about the prospects of applying this new approach to other regions of the world to facilitate faster and more accurate forest C assessments. It is a true leap forward in understanding the state and dynamics of the world's forests."

To read the full article, go to: http://www.fs.fed.us/psw/publications/hughes/psw_2011_hughes(asner)001.pdf

The Pacific Southwest Research is headquartered in Albany, Calif. The station develops and communicates science needed to sustain forest ecosystems and other benefits to society. It has laboratories and research centers in California, Hawaii and the United States-affiliated Pacific Islands. For more information, visit www.fs.fed.us/psw/.

The Carnegie Institution (www.carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, Calif., was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Sherri Eng | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>