Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of carbon dioxide threaten oyster survival

06.08.2010
It has been widely reported that the build up of carbon dioxide (CO2) in the air, which is caused by human behavior, will likely lead to climate change and have major implications for life on earth.

But less focus has been given to global warming's evil twin, ocean acidification, which occurs when CO2 lowers the pH of water bodies, thus making them more acidic. This lesser known phenomenon may have catastrophic effects on all sea life.

Oysters in Peril

Inna Sokolova, associate professor of biology at the University of North Carolina at Charlotte, studies the affect of high carbon dioxide on oyster survival, growth and shell hardness. The results of her research suggest that creatures once thought to be fairly adaptable to changes in the environment, may be in serious trouble.

Sokolova's research team includes Anna Ivanina and Ilya Kurochkin also from the University of North Carolina at Charlotte and Nicholas Lieb and Elia Beniash from the Department of Oral Biology at the University of Pittsburg. Their research findings will be reported by Sokolova at the Global Change and Global Science: Comparative Physiology in a Changing World conference from August 4-7, 2010 in Westminster, Colorado. This conference is sponsored by the American Physiological Society (http://www.the-aps.org). The full conference program is found at http://www.the-aps.org/meetings/aps/comparative/preprogram.htm.

The research group monitored oysters that were kept in high CO2 conditions. Juvenile oysters were affected the most by high CO2 conditions. These young oysters grow at a faster rate than the adults and need to use more energy for survival. There was a higher chance that juvenile oysters would die if kept in high CO2. They also had reduced growth of their shells and their soft bodies. The young oysters' shells were also more fragile and prone to breaking, potentially making them more susceptible to predators.

"Living in the high CO2 world may increase the cost of living which cuts into other energy expending pathways," says Sokolova. "Everyday maintenance becomes harder making it harder to live."

The effects on growth were less pronounced in the adult oysters since they don't grow as fast and have slower metabolisms than the juveniles.

The fact that the early life stages are more affected by high CO2, suggests that this may serve as a bottleneck for oyster decline. Sokolova says, "Expect to see huge effects on populations in the future."

The researchers found evidence that the oysters are sensing and trying to offset the affects of a high CO2 environment. The oyster's soft body covering called the mantle had increased expression of carbonic anhydrase, an enzyme that regulates pH and helps make bicarbonate, which is used to make the shell. Sokolova believes that the increased levels of this enzyme show that the oysters are at least trying to compensate for the acidic conditions in response to CO2, but it doesn't seem to be enough.

Oysters – Ecosystem Engineers of the Sea

Oysters live in estuaries – coastal water bodies that have fresh water rivers flowing into salt water – which are highly variable environments because of tides, waves and changes in salt concentration. The focus for those scientists interested in ocean acidification/climate change research generally has been on organisms in stable situations that are thought to be more affected by small changes in the environment. "People feel that oysters are tough and will tough out the changing conditions so they haven't been a primary research focus, but oysters are vulnerable too," says Sokolova.

Sokolova describes oysters as "ecosystem engineers," that are responsible for preventing erosion, filtering the water, ridding the water of harmful algae, providing a habitats and nurseries for other species like crabs. In addition, they are the number one harvested mollusk, meaning their presence is important economically for the seafood industry.

"We are looking at the effects of a very real environmental stressor that oysters see even nowadays. Our research shows that even under the present conditions they may be stressed," says Sokolova. "Monitoring these guys will help us monitor the effects on the entire ecosystem as levels of CO2 increase."

NOTE TO EDITORS: Dr. Sokolova will present her team's findings during the conference, Global Change and Global Science: Comparative Physiology in a Changing World. To arrange an interview with her, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (www.The-APS.org/press) has been an integral part of this discovery process since it was established in 1887.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>