Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High levels of carbon dioxide threaten oyster survival

06.08.2010
It has been widely reported that the build up of carbon dioxide (CO2) in the air, which is caused by human behavior, will likely lead to climate change and have major implications for life on earth.

But less focus has been given to global warming's evil twin, ocean acidification, which occurs when CO2 lowers the pH of water bodies, thus making them more acidic. This lesser known phenomenon may have catastrophic effects on all sea life.

Oysters in Peril

Inna Sokolova, associate professor of biology at the University of North Carolina at Charlotte, studies the affect of high carbon dioxide on oyster survival, growth and shell hardness. The results of her research suggest that creatures once thought to be fairly adaptable to changes in the environment, may be in serious trouble.

Sokolova's research team includes Anna Ivanina and Ilya Kurochkin also from the University of North Carolina at Charlotte and Nicholas Lieb and Elia Beniash from the Department of Oral Biology at the University of Pittsburg. Their research findings will be reported by Sokolova at the Global Change and Global Science: Comparative Physiology in a Changing World conference from August 4-7, 2010 in Westminster, Colorado. This conference is sponsored by the American Physiological Society (http://www.the-aps.org). The full conference program is found at http://www.the-aps.org/meetings/aps/comparative/preprogram.htm.

The research group monitored oysters that were kept in high CO2 conditions. Juvenile oysters were affected the most by high CO2 conditions. These young oysters grow at a faster rate than the adults and need to use more energy for survival. There was a higher chance that juvenile oysters would die if kept in high CO2. They also had reduced growth of their shells and their soft bodies. The young oysters' shells were also more fragile and prone to breaking, potentially making them more susceptible to predators.

"Living in the high CO2 world may increase the cost of living which cuts into other energy expending pathways," says Sokolova. "Everyday maintenance becomes harder making it harder to live."

The effects on growth were less pronounced in the adult oysters since they don't grow as fast and have slower metabolisms than the juveniles.

The fact that the early life stages are more affected by high CO2, suggests that this may serve as a bottleneck for oyster decline. Sokolova says, "Expect to see huge effects on populations in the future."

The researchers found evidence that the oysters are sensing and trying to offset the affects of a high CO2 environment. The oyster's soft body covering called the mantle had increased expression of carbonic anhydrase, an enzyme that regulates pH and helps make bicarbonate, which is used to make the shell. Sokolova believes that the increased levels of this enzyme show that the oysters are at least trying to compensate for the acidic conditions in response to CO2, but it doesn't seem to be enough.

Oysters – Ecosystem Engineers of the Sea

Oysters live in estuaries – coastal water bodies that have fresh water rivers flowing into salt water – which are highly variable environments because of tides, waves and changes in salt concentration. The focus for those scientists interested in ocean acidification/climate change research generally has been on organisms in stable situations that are thought to be more affected by small changes in the environment. "People feel that oysters are tough and will tough out the changing conditions so they haven't been a primary research focus, but oysters are vulnerable too," says Sokolova.

Sokolova describes oysters as "ecosystem engineers," that are responsible for preventing erosion, filtering the water, ridding the water of harmful algae, providing a habitats and nurseries for other species like crabs. In addition, they are the number one harvested mollusk, meaning their presence is important economically for the seafood industry.

"We are looking at the effects of a very real environmental stressor that oysters see even nowadays. Our research shows that even under the present conditions they may be stressed," says Sokolova. "Monitoring these guys will help us monitor the effects on the entire ecosystem as levels of CO2 increase."

NOTE TO EDITORS: Dr. Sokolova will present her team's findings during the conference, Global Change and Global Science: Comparative Physiology in a Changing World. To arrange an interview with her, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (www.The-APS.org/press) has been an integral part of this discovery process since it was established in 1887.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>