Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


High levels of carbon dioxide threaten oyster survival

It has been widely reported that the build up of carbon dioxide (CO2) in the air, which is caused by human behavior, will likely lead to climate change and have major implications for life on earth.

But less focus has been given to global warming's evil twin, ocean acidification, which occurs when CO2 lowers the pH of water bodies, thus making them more acidic. This lesser known phenomenon may have catastrophic effects on all sea life.

Oysters in Peril

Inna Sokolova, associate professor of biology at the University of North Carolina at Charlotte, studies the affect of high carbon dioxide on oyster survival, growth and shell hardness. The results of her research suggest that creatures once thought to be fairly adaptable to changes in the environment, may be in serious trouble.

Sokolova's research team includes Anna Ivanina and Ilya Kurochkin also from the University of North Carolina at Charlotte and Nicholas Lieb and Elia Beniash from the Department of Oral Biology at the University of Pittsburg. Their research findings will be reported by Sokolova at the Global Change and Global Science: Comparative Physiology in a Changing World conference from August 4-7, 2010 in Westminster, Colorado. This conference is sponsored by the American Physiological Society ( The full conference program is found at

The research group monitored oysters that were kept in high CO2 conditions. Juvenile oysters were affected the most by high CO2 conditions. These young oysters grow at a faster rate than the adults and need to use more energy for survival. There was a higher chance that juvenile oysters would die if kept in high CO2. They also had reduced growth of their shells and their soft bodies. The young oysters' shells were also more fragile and prone to breaking, potentially making them more susceptible to predators.

"Living in the high CO2 world may increase the cost of living which cuts into other energy expending pathways," says Sokolova. "Everyday maintenance becomes harder making it harder to live."

The effects on growth were less pronounced in the adult oysters since they don't grow as fast and have slower metabolisms than the juveniles.

The fact that the early life stages are more affected by high CO2, suggests that this may serve as a bottleneck for oyster decline. Sokolova says, "Expect to see huge effects on populations in the future."

The researchers found evidence that the oysters are sensing and trying to offset the affects of a high CO2 environment. The oyster's soft body covering called the mantle had increased expression of carbonic anhydrase, an enzyme that regulates pH and helps make bicarbonate, which is used to make the shell. Sokolova believes that the increased levels of this enzyme show that the oysters are at least trying to compensate for the acidic conditions in response to CO2, but it doesn't seem to be enough.

Oysters – Ecosystem Engineers of the Sea

Oysters live in estuaries – coastal water bodies that have fresh water rivers flowing into salt water – which are highly variable environments because of tides, waves and changes in salt concentration. The focus for those scientists interested in ocean acidification/climate change research generally has been on organisms in stable situations that are thought to be more affected by small changes in the environment. "People feel that oysters are tough and will tough out the changing conditions so they haven't been a primary research focus, but oysters are vulnerable too," says Sokolova.

Sokolova describes oysters as "ecosystem engineers," that are responsible for preventing erosion, filtering the water, ridding the water of harmful algae, providing a habitats and nurseries for other species like crabs. In addition, they are the number one harvested mollusk, meaning their presence is important economically for the seafood industry.

"We are looking at the effects of a very real environmental stressor that oysters see even nowadays. Our research shows that even under the present conditions they may be stressed," says Sokolova. "Monitoring these guys will help us monitor the effects on the entire ecosystem as levels of CO2 increase."

NOTE TO EDITORS: Dr. Sokolova will present her team's findings during the conference, Global Change and Global Science: Comparative Physiology in a Changing World. To arrange an interview with her, please contact Donna Krupa at 301.634.7209 or

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society ( has been an integral part of this discovery process since it was established in 1887.

Donna Krupa | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>