Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hidden effects of climate change may threaten eelgrass meadows

Some research has shown that the effects of changes in the climate may be weak or even non-existent.

This makes it easy to conclude that climate change will ultimately have less impact than previous warnings have predicted. But it could also be explained as direct and indirect effects cancelling each other out, as scientists from the University of Gothenburg, Sweden, show in a paper recently published in PNAS, the esteemed US scientific journal.

To investigate how different climate impacts interact, an experiment was conducted at Kristineberg Marine Research Station.

"We raised the water temperature in miniature ecosystems containing eelgrass meadows, while simultaneously bubbling with carbon-dioxide. This allowed us to simulate a future climate scenario, characterized by both warmer waters and ocean acidification", explains researcher Christian Alsterberg.

Eelgrass meadows grow in shallow coastal waters and are among the most productive ecosystems in the sea. These meadows are now threatened, not only by climate change but also by overfishing and eutrophication.

"By studying eelgrass meadows on a ecosystem level, we were able to observe how plants and animals interact under changing climatic conditions. This also allowed us to measure the indirect effects, meaning the effects of climate change on an animal or a plant mediated through another organism."

For example, the metabolism of many crustaceans that live in eelgrass meadows increases when the water temperature rises. This in turn means they need to eat more algae and may consequently graze it more efficiently. At the same time, the growth of benthic microalgae on the sediment surface in the eelgrass meadows will be more vigorous.

Using statistical methods that separates direct and indirect effects, the researchers were able to discern how higher water temperature combined with ocean acidification affects not just individual species but also interactions between species in the ecosystem.

The researchers found that the effects are largely determined by the presence or absence of different fauna, primarily small algae-eating crustaceans. The net effect of changes in temperature and ocean acidification on benthic microalgae is non-existent if there are crustaceans in the ecosystem. But in the absence of crustaceans, the amount of benthic algae is largely controlled by positive and negative direct and indirect effects of higher temperatures and acidification.

The results showed that, without small algae-eating crustaceans in the eelgrass meadows, climate change could pose a much greater threat to their survival.

"The experiment also taught us the importance of investigating climate change using several different approaches, in order to fully understand its effects and to predict future impacts", says Christian Alsterberg.

Link to article:


Christian Alsterberg
+ 46 (0) 31-786 65 96

Annika Koldenius | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>