Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hidden effects of climate change may threaten eelgrass meadows

Some research has shown that the effects of changes in the climate may be weak or even non-existent.

This makes it easy to conclude that climate change will ultimately have less impact than previous warnings have predicted. But it could also be explained as direct and indirect effects cancelling each other out, as scientists from the University of Gothenburg, Sweden, show in a paper recently published in PNAS, the esteemed US scientific journal.

To investigate how different climate impacts interact, an experiment was conducted at Kristineberg Marine Research Station.

"We raised the water temperature in miniature ecosystems containing eelgrass meadows, while simultaneously bubbling with carbon-dioxide. This allowed us to simulate a future climate scenario, characterized by both warmer waters and ocean acidification", explains researcher Christian Alsterberg.

Eelgrass meadows grow in shallow coastal waters and are among the most productive ecosystems in the sea. These meadows are now threatened, not only by climate change but also by overfishing and eutrophication.

"By studying eelgrass meadows on a ecosystem level, we were able to observe how plants and animals interact under changing climatic conditions. This also allowed us to measure the indirect effects, meaning the effects of climate change on an animal or a plant mediated through another organism."

For example, the metabolism of many crustaceans that live in eelgrass meadows increases when the water temperature rises. This in turn means they need to eat more algae and may consequently graze it more efficiently. At the same time, the growth of benthic microalgae on the sediment surface in the eelgrass meadows will be more vigorous.

Using statistical methods that separates direct and indirect effects, the researchers were able to discern how higher water temperature combined with ocean acidification affects not just individual species but also interactions between species in the ecosystem.

The researchers found that the effects are largely determined by the presence or absence of different fauna, primarily small algae-eating crustaceans. The net effect of changes in temperature and ocean acidification on benthic microalgae is non-existent if there are crustaceans in the ecosystem. But in the absence of crustaceans, the amount of benthic algae is largely controlled by positive and negative direct and indirect effects of higher temperatures and acidification.

The results showed that, without small algae-eating crustaceans in the eelgrass meadows, climate change could pose a much greater threat to their survival.

"The experiment also taught us the importance of investigating climate change using several different approaches, in order to fully understand its effects and to predict future impacts", says Christian Alsterberg.

Link to article:


Christian Alsterberg
+ 46 (0) 31-786 65 96

Annika Koldenius | idw
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>