Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavy metal link to mutations, low growth and fertility among crustaceans in Sydney Harbor tributary

27.08.2008
Heavy metal pollutants are linked to genetic mutations, stunted growth and declining fertility among small crustaceans in the Parramatta River, the main tributary of Sydney Harbour, new research shows.

The finding adds to mounting evidence that toxic sediments and seaweeds in Sydney Harbour are a deadly diet for many sea creatures.

The new findings, published in the journal, Science of the Total Environment, reveal genetic mutations among crustaceans (Melita plumulosa) in the Parramatta River but none among those in the cleaner Hawkesbury River.

Earlier this year, UNSW scientists revealed that copper-contaminated seaweeds in Sydney Harbour were killing 75 percent of the offspring of small crustaceans that feed on a common brown seaweed.

That study showed that the harbour's seaweeds have the world's highest levels of copper and lead contamination as a consequence of stormwater run-off, industrial wastewaters and motorised watercraft.

The new study found the mutations and lower growth and fertility persisted through several generations of M. plumulosa in controlled laboratory conditions, suggesting that genetic changes are causing permanent negative impacts.

"The lower fertility and growth rates among the creatures exposed to contaminants is probably a stress response," says the study's lead author, UNSW science honours student, Pann Pann Chung.

The crustaceans were randomly sampled from two sites within each river: Homebush Bay South and Duck River in the Parramatta River, and Mooney Mooney and Half Moon Bend in the Hawkesbury.

M. plumulosa is a shrimp-like creature found among rocks and mudflats on shorelines and tide zones, although little is known about its genetic history. A native to the south-eastern coast of Australia, the amphipod feeds on organic material in sand and sediment.

"These crustaceans are sensitive to heavy metals such as copper, cadmium and zinc and scientists use them as a 'test organisms' for assessing the toxicity of marine sediments, says Ms Chung. "They accumulate heavy metals inside their tissues and scientists use them to monitor environmental pollutants."

Other research has revealed that chronic exposure to metal toxicants is linked to DNA damage in earthworms, periwinkles and some fish species.

Dan Gaffney | EurekAlert!
Further information:
http://www.unsw.edu.au/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>