Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How heating our homes could help reduce climate change

27.09.2010
A radical new heating system where homes would be heated by district centres rather than in individual households could dramatically cut the UK’s greenhouse gas emissions.

In a series of reports to be presented at a major conference this week, scientists at The University of Manchester claim using sustainable wood and other biofuels could hold the key to lowering harmful greenhouse gases.

Building district heating schemes which would provide heat and hot water for a neighbourhood or community would not only drastically reduce greenhouse gases but would also be highly cost effective, the authors claim.

Focus groups to test the UK public’s eagerness for such schemes have already been held and have resulted in the majority of people being in favour of the localised centres.

The plans would only provide cost savings if the heat demand is very steady. Otherwise large scale dedicated electricity plants become the most cost effective way to save greenhouse gases with biomass, with costs per unit of carbon saved around half that of a smaller facility.

The reports state that using wood in UK power stations gave greenhouse gas reductions of over 84% and even higher savings of 94% were possible for heating schemes.

Prepared by the Tyndall Centre for Climate Change Research to highlight the effectiveness of using sustainable fuels rather than rely on fossil fuels, the series of reports will be presented this week at the UK’s first bio conference – BioTen – which begins in Birmingham today (Tuesday 21st).

Author Dr Patricia Thornley suggests using a number of supply chains, including imported forest residues and local grown energy crops, would reduce emissions and save on fossil fuels.

The key is that biomass must be grown sustainably, taking into account potential for damage to the environment or undesirable socio-economic impacts.

Previous work by University of Manchester researchers took this into account in concluding that sustainable biomass could supply at least 4.9% of the UK’s total energy demand.

Realising that potential could result in savings of 18 Mt of carbon dioxide every year, which is equivalent to the greenhouse gas emissions associated with around 2.7 million households.

Dr Patricia Thornley, from the School of Mechanical Aerospace and Civil Engineering at The University of Manchester, said: “Bioenergy could play a very important part in helping the UK meet greenhouse gas reduction targets that will help to reduce the impact of climate change.

“Heating homes with wood reduces greenhouse gas emissions because plants and trees absorb carbon dioxide when they are growing and then re-release it when they are burnt for heating – so the only increase in greenhouse gas emissions are those involved in things like harvesting and processing the fuel.

“This work has taken a detailed look at all those emissions and established that even when we take them into account, there are still huge greenhouse gas savings to be made.

“If we can combine the low-carbon wood with really efficient heating systems, that offers an efficient and cost-effective route to reducing the greenhouse gas emissions.

“The challenge for the industry now is to concentrate on developing new efficient and cost-effective technologies for biofuel production and to concentrate on getting the heating technologies deployed in the right environment.”

Notes for editors
Dr Thornley is available for interview on request.
The papers, Assessing the sustainability of bioelectricity supply chains and Cost-effective carbon reductions in the Bioenegy sector are available from the Press Office.

The Tyndall Centre, created in 2000, is a distributed national centre for research into climate change mitigation and adaptation, with Manchester leading on decarbonisation of energy systems and long-term coastal processes.

For media enquiries contact

Daniel Cochlin
Media Relations
The University of Manchester
Tel: 0161 275 8387
email: daniel.cochlin@manchester.ac.uk

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

nachricht What the size distribution of organisms tells us about the energetic efficiency of a lake
05.06.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>