Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How heating our homes could help reduce climate change

27.09.2010
A radical new heating system where homes would be heated by district centres rather than in individual households could dramatically cut the UK’s greenhouse gas emissions.

In a series of reports to be presented at a major conference this week, scientists at The University of Manchester claim using sustainable wood and other biofuels could hold the key to lowering harmful greenhouse gases.

Building district heating schemes which would provide heat and hot water for a neighbourhood or community would not only drastically reduce greenhouse gases but would also be highly cost effective, the authors claim.

Focus groups to test the UK public’s eagerness for such schemes have already been held and have resulted in the majority of people being in favour of the localised centres.

The plans would only provide cost savings if the heat demand is very steady. Otherwise large scale dedicated electricity plants become the most cost effective way to save greenhouse gases with biomass, with costs per unit of carbon saved around half that of a smaller facility.

The reports state that using wood in UK power stations gave greenhouse gas reductions of over 84% and even higher savings of 94% were possible for heating schemes.

Prepared by the Tyndall Centre for Climate Change Research to highlight the effectiveness of using sustainable fuels rather than rely on fossil fuels, the series of reports will be presented this week at the UK’s first bio conference – BioTen – which begins in Birmingham today (Tuesday 21st).

Author Dr Patricia Thornley suggests using a number of supply chains, including imported forest residues and local grown energy crops, would reduce emissions and save on fossil fuels.

The key is that biomass must be grown sustainably, taking into account potential for damage to the environment or undesirable socio-economic impacts.

Previous work by University of Manchester researchers took this into account in concluding that sustainable biomass could supply at least 4.9% of the UK’s total energy demand.

Realising that potential could result in savings of 18 Mt of carbon dioxide every year, which is equivalent to the greenhouse gas emissions associated with around 2.7 million households.

Dr Patricia Thornley, from the School of Mechanical Aerospace and Civil Engineering at The University of Manchester, said: “Bioenergy could play a very important part in helping the UK meet greenhouse gas reduction targets that will help to reduce the impact of climate change.

“Heating homes with wood reduces greenhouse gas emissions because plants and trees absorb carbon dioxide when they are growing and then re-release it when they are burnt for heating – so the only increase in greenhouse gas emissions are those involved in things like harvesting and processing the fuel.

“This work has taken a detailed look at all those emissions and established that even when we take them into account, there are still huge greenhouse gas savings to be made.

“If we can combine the low-carbon wood with really efficient heating systems, that offers an efficient and cost-effective route to reducing the greenhouse gas emissions.

“The challenge for the industry now is to concentrate on developing new efficient and cost-effective technologies for biofuel production and to concentrate on getting the heating technologies deployed in the right environment.”

Notes for editors
Dr Thornley is available for interview on request.
The papers, Assessing the sustainability of bioelectricity supply chains and Cost-effective carbon reductions in the Bioenegy sector are available from the Press Office.

The Tyndall Centre, created in 2000, is a distributed national centre for research into climate change mitigation and adaptation, with Manchester leading on decarbonisation of energy systems and long-term coastal processes.

For media enquiries contact

Daniel Cochlin
Media Relations
The University of Manchester
Tel: 0161 275 8387
email: daniel.cochlin@manchester.ac.uk

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>