Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heating from carbon dioxide will increase five-fold over the next millennia

29.01.2009
Scientists at the University of Liverpool have found that heating from carbon dioxide will increase five-fold over the next millennia.

Scientists studied the impact that current carbon emissions have on the delicate balance between air and sea carbon exchange. They found that the ocean’s ability to store excessive amounts of carbon dioxide over thousands of years will affect the long-term heating of the planet.

The ocean acts as an enormous carbon sink which naturally absorbs any extra carbon dioxide added to the atmosphere. Its ability to store more carbon dioxide than both the atmosphere and land provides long-term storage for the carbon dioxide emitted by human activities.

Scientists at Liverpool, however, have found that if all conventional coal, oil and gas carbon reserves are exhausted, the excessive amounts of carbon dioxide in the atmosphere will begin to alter the ocean’s natural chemistry and hinder its ability to absorb and exchange the gas.

Professor Ric Williams, from the University’s School of Earth and Ocean Sciences, explains: “It is accepted that rising atmospheric carbon dioxide concentrations lead to an increase in heating around the globe. It was, however, unclear as to how the ocean’s ability to store carbon could affect the future overall heating of the earth.

“The excessive amount of carbon in the atmosphere will make the oceans more acidic and hamper the ability of the oceans to absorb further carbon from the atmosphere. The extra carbon dioxide remaining in the atmosphere will lead to an increase in the overall heating of our planet, making sea levels rise and exacerbating the melting of the Arctic ice caps.

“To prevent a situation like this from happening scientists are working to develop carbon-capture techniques, which aim to remove excess carbon from identifiable sites, such as the atmosphere around fossil fuel plants, and permanently store them away.”

The research, in collaboration with the University of East Anglia, The University of Bristol and Massachusetts Institute of Technology, is funded by the UK Natural Environment Research Council.

Charlotte Roberts | alfa
Further information:
http://www.liv.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>