Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hatchery, OSU scientists link ocean acidification to larval oyster failure

Researchers at Oregon State University have definitively linked an increase in ocean acidification to the collapse of oyster seed production at a commercial oyster hatchery in Oregon, where larval growth had declined to a level considered by the owners to be “non-economically viable.”
A study by the researchers found that elevated seawater carbon dioxide (CO2) levels, resulting in more corrosive ocean water, inhibited the larval oysters from developing their shells and growing at a pace that would make commercial production cost-effective. As atmospheric CO2 levels continue to rise, this may serve as the proverbial canary in the coal mine for other ocean acidification impacts on shellfish, the scientists say.

Results of the research have just been published in the journal, Limnology and Oceanography.

“This is one of the first times that we have been able to show how ocean acidification affects oyster larval development at a critical life stage,” said Burke Hales, an OSU chemical oceanographer and co-author on the study. “The predicted rise of atmospheric CO2 in the next two to three decades may push oyster larval growth past the break-even point in terms of production.”

The owners of Whiskey Creek Shellfish Hatchery at Oregon’s Netarts Bay began experiencing a decline in oyster seed production several years ago, and looked at potential causes including low oxygen and pathogenic bacteria. Alan Barton, who works at the hatchery and is an author on the journal article, was able to eliminate those potential causes and shifted his focus to acidification.

Barton sent samples to OSU and the National Oceanic and Atmospheric Administration’s Pacific Marine Environmental Laboratory for analysis. Their ensuing study clearly linked the production failures to the CO2 levels in the water in which the larval oysters are spawned and spend the first 24 hours of their lives, the critical time when they develop from fertilized eggs to swimming larvae, and build their initial shells.

“The early growth stage for oysters is particularly sensitive to the carbonate chemistry of the water,” said George Waldbusser, a benthic ecologist in OSU’s College of Earth, Ocean, and Atmospheric Sciences. “As the water becomes more acidified, it affects the formation of calcium carbonate, the mineral of which the shell material consists. As the CO2 goes up, the mineral stability goes down, ultimately leading to reduced growth or mortality.”

Commercial oyster production on the West Coast of North America generates more than $100 million in gross sales annually, generating economic activity of some $273 million. The industry has depended since the 1970s on oyster hatcheries for a steady supply of the seed used by growers. From 2007 to 2010, major hatcheries supplying the seed for West Coast oyster growers suffered persistent production failures.

The wild stocks of non-hatchery oysters simultaneously showed low recruitment, putting additional strain on limited seed supply.

Hales said Netarts Bay, where the Whiskey Creek hatchery is located, experiences a wide range of chemistry fluctuations. The OSU researchers say hatchery operators may be able to adapt their operations to take advantage of periods when water quality is at its highest.

“In addition to the impact of seasonal upwelling, the water chemistry changes with the tidal cycle, and with the time of day,” Hales said. “Afternoon sunlight, for example, promotes photosynthesis in the bay and that production can absorb some of the carbon dioxide and lower the corrosiveness of the water.”

A previous study co-authored by Hales found the water that is being upwelled in the Pacific Ocean off the Oregon coast has been kept at depth away from the surface for about 50 years – meaning it was last exposed to the atmosphere a half-century ago, when carbon dioxide levels were much lower. “Since atmospheric CO2 levels have risen significantly in the past half-century, it means that the water that will be upwelled in the future will become increasingly be more corrosive,” Hales said.

The OSU researchers also found that larval oysters showed delayed response to the water chemistry, which may cast new light on other experiments looking at the impacts of acidification on shellfish. In their study, they found that larval oysters raised in water that was acidic, but non-lethal, had significantly less growth in later stages of their life.

“The takeaway message here is that the response to poor water quality isn’t always immediate,” said Waldbusser. “In some cases, it took until three weeks after fertilization for the impact from the acidic water to become apparent. Short-term experiments of just a few days may not detect the damage.”

The research has been funded by a grant from the National Science Foundation, and supported by NOAA and the Pacific Coast Shellfish Growers Association. Other authors on the journal article include Chris Langdon, of OSU’s Hatfield Marine Science Center, and Richard Feely, of NOAA’s Pacific Marine Environmental Laboratories.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges.

Burke Hales | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>