Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful substances poorly monitored in Baltic Sea region

14.01.2009
In the Baltic Sea region, there are considerable deficiencies in the observation and monitoring of the biological effects of harmful substances in comparison to many other maritime regions.

In particular, there is little use of so-called biomarkers, early warning signs at a molecular and cell level. As a part of the joint European BONUS research programme, methods of measuring and observing the biological effects of harmful substances are now being developed.

This project led by Finnish researchers is also aiming to promote the introduction of such methods into the monitoring programmes and assessments of the state of the Baltic Sea.

“The introduction of new methods significantly advances the observation of the environmental load caused by human activity and the understanding of its effects on the eco-system of the Baltic Sea,” says the coordinator of the project, Kari K. Lehtonen, Senior Scientist at the Marine Centre of the Finnish Environment Centre. Sixteen research institutes from all the Baltic Sea countries are participating in the study.

The research is using bio-marker methods to study the effects of harmful substances on the fish, shellfish and crustacean species in the different parts of the Baltic Sea maritime region. Another research focus is how the changes at molecular and cell level caused by chemicals appear at other biological levels, such as in human health and reproduction and in the population size and structure of different species. “The idea is to develop for the different areas of the Baltic Sea a multi-level range of methods for observing and describing environmental stress caused by harmful substances. In these methods, bio-markers in particular will act as sensitive diagnostic tools,” says Lehtonen.

Based on the project results and existing research material, recommendations and guidelines will be prepared for a new strategy concerning the uniform chemical-biological monitoring of harmful substances. Methods aimed at the assessment of the state of health of the marine eco-system will also be developed. In addition to the levels and effects of harmful substances, these methods will also take into account other variables such as biodiversity and the structures of biotic communities.

Research funding organisations from the nine Baltic Sea nations are behind the BONUS programme, which was launched at the beginning of this year. The research is also being funded by the EU Commission. The Finnish funding organisation is the Academy of Finland. At the first stage of the research programme, decisions were made to fund 16 research projects with a total of 22 million euros, with more than 100 research institutes and universities from the Baltic Sea countries taking part. Finland is coordinating four of these projects. Total project funding will be approximately 60 million euros between 2010 and 2016.

Anita Westerback | alfa
Further information:
http://www.aka.fi
http://www.fimr.fi

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>