Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Harmful substances poorly monitored in Baltic Sea region

In the Baltic Sea region, there are considerable deficiencies in the observation and monitoring of the biological effects of harmful substances in comparison to many other maritime regions.

In particular, there is little use of so-called biomarkers, early warning signs at a molecular and cell level. As a part of the joint European BONUS research programme, methods of measuring and observing the biological effects of harmful substances are now being developed.

This project led by Finnish researchers is also aiming to promote the introduction of such methods into the monitoring programmes and assessments of the state of the Baltic Sea.

“The introduction of new methods significantly advances the observation of the environmental load caused by human activity and the understanding of its effects on the eco-system of the Baltic Sea,” says the coordinator of the project, Kari K. Lehtonen, Senior Scientist at the Marine Centre of the Finnish Environment Centre. Sixteen research institutes from all the Baltic Sea countries are participating in the study.

The research is using bio-marker methods to study the effects of harmful substances on the fish, shellfish and crustacean species in the different parts of the Baltic Sea maritime region. Another research focus is how the changes at molecular and cell level caused by chemicals appear at other biological levels, such as in human health and reproduction and in the population size and structure of different species. “The idea is to develop for the different areas of the Baltic Sea a multi-level range of methods for observing and describing environmental stress caused by harmful substances. In these methods, bio-markers in particular will act as sensitive diagnostic tools,” says Lehtonen.

Based on the project results and existing research material, recommendations and guidelines will be prepared for a new strategy concerning the uniform chemical-biological monitoring of harmful substances. Methods aimed at the assessment of the state of health of the marine eco-system will also be developed. In addition to the levels and effects of harmful substances, these methods will also take into account other variables such as biodiversity and the structures of biotic communities.

Research funding organisations from the nine Baltic Sea nations are behind the BONUS programme, which was launched at the beginning of this year. The research is also being funded by the EU Commission. The Finnish funding organisation is the Academy of Finland. At the first stage of the research programme, decisions were made to fund 16 research projects with a total of 22 million euros, with more than 100 research institutes and universities from the Baltic Sea countries taking part. Finland is coordinating four of these projects. Total project funding will be approximately 60 million euros between 2010 and 2016.

Anita Westerback | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>