Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hammond Project to Turn Waste Into Wealth

26.03.2010
University of Chicago Alumnus Jack Sheaffer, SM’58, PhD’64, is giving John Frederick, Professor in Geophysical Sciences, the opportunity to practice what he teaches.

Frederick co-teaches a course each autumn quarter on Environmental Science and Policy in the Harris School of Public Policy Studies. He’s also a board member of the non-profit Center for the Transformation of Waste Technology, where Sheaffer is the managing director.

Sheaffer established the center in part to carry out an ambitious recycling project in Hammond, Indiana, that involves harnessing treated effluent to irrigate and fertilize cropland and for a host of other income-generating activities. “This project is about taking Hammond’s wastewater and turning it into wealth-producing resources,” Frederick said.

Frederick and Sheaffer met at a roundtable discussion organized by Robert Fefferman, Dean of the Physical Sciences Division. Sheaffer, the president and chairman of Sheaffer International, founded the environmental development company in 1996 to focus on wastewater reclamation and reuse.

Sheaffer told Frederick about his plans for Hammond, and Frederick immediately became involved. “When I see something that looks relevant, I like it,” Frederick said.

Frederick’s role in the project is to examine how it might affect the sequestration of atmospheric carbon. If the project sequesters more carbon than it emits, then the sale of carbon credits is one of several potential sources of income.

Wastewater-recycling economics
Wastewater is full of reusable minerals and nutrients. Instead of throwing it away, Frederick said, it is possible to do something productive with it. “I like to look at the economics of it and see if it makes sense, and things like this make sense,” he said.

Farmers need to put down 200 pounds of nitrogen on every acre of corn they grow, at a cost of $80 to $100 an acre or more. It costs approximately 75 cents a pound, meanwhile, for the Hammond Sanitary District’s treatment system to remove it. Tighter federal regulations may be in the offing, said District Manager Michael Unger, which would dramatically increase treatment costs.

“A plant like ours could spend tens of millions of dollars to get rid of all the nitrogen, so it’s very costly,” Unger said. But why pay to remove the nitrogen when it’s a potential resource? “Nitrogen fertilizer prices have gone as high as $1,200 a ton, maybe even higher,” he said.

The BP oil refinery in Whiting, Ind., sparked the water reuse project several years ago after announcing that it intended to increase the discharge of its effluents into Lake Michigan. Sheaffer initially approached BP with his idea. When that failed to work out, he opened discussions with Michael Unger, manager of Hammond’s Sanitary District.

The project will cost an estimated $129 million, but the revenues it creates can eventually retire the debt and pay for all operations and maintenance, according to Sheaffer. “The thing that’s exciting is the project can pay for itself,” he said.

Sheaffer’s team completed a proof-of-concept study last summer. Next, with $2.86 million of planning and design funding, will come development of the plans and specifications for building the project. Sheaffer’s goal is to get the project operational within three years.

Building a self-sustaining system

“You can actually build a self-sustaining system,” Frederick said.

The Hammond Water Reuse Project’s components include:

• Diverting the city’s nutrient-laden wastewater from flowing into the Grand Calumet River, thence Lake Michigan, into 11,350 acres of irrigated farm land to grow crops
• Using the corn to produce ethanol and its byproducts to feed livestock
• Harnessing livestock waste as an energy source for the ethanol plant
• Selling the crops and the livestock
• Selling the carbon credits that the project generates via the Chicago Climate Exchange

As science adviser to the Secretary of the Army in 1972, Sheaffer helped write the Clean Water Act. The Department of the Army, which has longstanding responsibilities for the nation’s water-resource management and flood control, honored him for Exceptional Civilian Service that same year.

“If you read the Clean Water Act, it says we are to generate revenue that will pay not only for the wastewater treatment, but also pay for other environmental improvements. This is probably the first project that will do that,” Sheaffer said.

“I was dreaming back then about how it ought to be done. I was not aware that anybody ever did it, and it didn’t look like anybody really wanted to do it. But Hammond can be the project.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>