Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Something out of Nothing

27.10.2011
TAU researchers nurture innovative biofuel crops to reduce our carbon footprint

Fears of global warming and its impact on our environment have left scientists scrambling to decrease levels of atmospheric carbon we humans produce. Now, Tel Aviv University researchers are doing their part to reduce humanity's carbon footprint by successfully growing forests in the most unlikely place — deep in Israel's Aravah Desert.

With environmental "extras" such as a local plant species, recycled sewage water unsuitable for agriculture, and arid lands unusable for crops, a group of researchers including Profs. Amram Eshel and Aviah Zilberstein of TAU's Department of Molecular Biology and Ecology of Plants at the George S. Wise Faculty of Life Sciences and the university's new Renewable Energy Center have discovered a winning combination.

In many parts of the world, including areas of India, central Asia and the Sahara desert, their new crop of plants would be not only viable in difficult terrain, but valuable in terms of carbon reduction. These standing crops, grown on land once considered barren, can soak up carbon dioxide from the atmosphere and convert it into oxygen. Their research is soon to be published in the European Journal of Plant Science and Biotechnology.

Making the desert bloom

Though maintaining our current forests is a necessary initiative, Prof. Eshel says, it is not enough to off-set human carbon output. In their quest to create forests that diminish carbon dioxide in the atmosphere, many countries have been converting fertile agricultural lands into forests. But TAU researchers believed that encouraging growth on a piece of land that was traditionally barren, such as desert land, was a step in a better direction.

"When you take the overall carbon balance of converting agricultural land and freshwater into energy products, you may not gain that much," says Prof. Eshel. "You're investing a lot of energy in the process itself, thus releasing a lot of carbon into the atmosphere."

To conserve fresh water, the researchers used water considered of low quality, such as recycled sewage water and salt water that was the by-product of inland desalination plants. The final piece of the puzzle was to find a plant hearty enough to successfully grow in the desert. The researchers turned to Tamarix, a botanical genus that includes salt cedar trees and is indigenous to the old-world deserts. Some 150 different varieties of the botanical genus were used, grown in both a common garden setting and in densities that mimicked commercial crops.

With the first harvest of trees just last summer, researchers have much to process, including analyzing the amount of carbon dioxide the crops have successfully captured from the atmosphere. The answers will determine how much carbon such a crop can offset.

A source for biofuel?

The cut trees themselves might also be used as a source of renewable energy. These "biomass" or "biofuel" crops, derived from natural crops, could help to reduce dependence on traditional fossil fuels such as coal. But the question of where to grow crops dedicated to fuel production had to be addressed, since converting agricultural land could have the side effect of creating food shortages.

Arid and previously unused desert lands provide an ideal solution, Prof. Eshel says. To make his approach economically feasible, much more land would be needed than Israel can provide. But similar tracts of land, such as the Sahara Desert, are big enough to grow these types of crops on a larger scale. He adds that what has been done in the Israeli desert can be replicated elsewhere to great effect.

This research is a collaboration between TAU's Porter School of Environmental Science, the University of Tuscia in Viterbo, Italy, and the Hebrew University in Jerusalem. Funds for the study were provided by the Italian Ministry for the Environment, Land and Sea.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>