Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing Something out of Nothing

27.10.2011
TAU researchers nurture innovative biofuel crops to reduce our carbon footprint

Fears of global warming and its impact on our environment have left scientists scrambling to decrease levels of atmospheric carbon we humans produce. Now, Tel Aviv University researchers are doing their part to reduce humanity's carbon footprint by successfully growing forests in the most unlikely place — deep in Israel's Aravah Desert.

With environmental "extras" such as a local plant species, recycled sewage water unsuitable for agriculture, and arid lands unusable for crops, a group of researchers including Profs. Amram Eshel and Aviah Zilberstein of TAU's Department of Molecular Biology and Ecology of Plants at the George S. Wise Faculty of Life Sciences and the university's new Renewable Energy Center have discovered a winning combination.

In many parts of the world, including areas of India, central Asia and the Sahara desert, their new crop of plants would be not only viable in difficult terrain, but valuable in terms of carbon reduction. These standing crops, grown on land once considered barren, can soak up carbon dioxide from the atmosphere and convert it into oxygen. Their research is soon to be published in the European Journal of Plant Science and Biotechnology.

Making the desert bloom

Though maintaining our current forests is a necessary initiative, Prof. Eshel says, it is not enough to off-set human carbon output. In their quest to create forests that diminish carbon dioxide in the atmosphere, many countries have been converting fertile agricultural lands into forests. But TAU researchers believed that encouraging growth on a piece of land that was traditionally barren, such as desert land, was a step in a better direction.

"When you take the overall carbon balance of converting agricultural land and freshwater into energy products, you may not gain that much," says Prof. Eshel. "You're investing a lot of energy in the process itself, thus releasing a lot of carbon into the atmosphere."

To conserve fresh water, the researchers used water considered of low quality, such as recycled sewage water and salt water that was the by-product of inland desalination plants. The final piece of the puzzle was to find a plant hearty enough to successfully grow in the desert. The researchers turned to Tamarix, a botanical genus that includes salt cedar trees and is indigenous to the old-world deserts. Some 150 different varieties of the botanical genus were used, grown in both a common garden setting and in densities that mimicked commercial crops.

With the first harvest of trees just last summer, researchers have much to process, including analyzing the amount of carbon dioxide the crops have successfully captured from the atmosphere. The answers will determine how much carbon such a crop can offset.

A source for biofuel?

The cut trees themselves might also be used as a source of renewable energy. These "biomass" or "biofuel" crops, derived from natural crops, could help to reduce dependence on traditional fossil fuels such as coal. But the question of where to grow crops dedicated to fuel production had to be addressed, since converting agricultural land could have the side effect of creating food shortages.

Arid and previously unused desert lands provide an ideal solution, Prof. Eshel says. To make his approach economically feasible, much more land would be needed than Israel can provide. But similar tracts of land, such as the Sahara Desert, are big enough to grow these types of crops on a larger scale. He adds that what has been done in the Israeli desert can be replicated elsewhere to great effect.

This research is a collaboration between TAU's Porter School of Environmental Science, the University of Tuscia in Viterbo, Italy, and the Hebrew University in Jerusalem. Funds for the study were provided by the Italian Ministry for the Environment, Land and Sea.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>