Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Groovy Turtles’ Genes to Aid in Their Rescue


The diverse patterns on the diamondback terrapins’ intricately grooved shell may be their claim to fame, but a newly published U.S. Geological Survey study of the genetic variation underneath their shell holds one key to rescuing these coastal turtles.

Listed as an endangered species in Rhode Island and deemed threatened in Massachusetts, the terrapin is the only turtle in North America that spends its entire life in coastal marshes and mangroves. Seven different subspecies of terrapins are currently recognized by scientists based on external traits, such as their skin color and the shape of their shells. Each subspecies occupies a strip of the eastern seaboard or Gulf of Mexico coastline, from as far north as Massachusetts to as far west as Texas.

Many of the coastal states where terrapins are found have designated it a species of special concern, and the states are looking to address the issues the terrapins face due to fragmentation of their coastal habitats. An increasingly patchy swath of isolated coastal marshes makes it harder for terrapins to find each other and continue interbreeding as they have in the past.

“Before now, it was not clear how terrapin genetics varied across the range,” said Kristen Hart, a USGS research ecologist and lead author of the study. “Understanding this variation across the landscape helps land managers develop conservation plans. For example, they may pinpoint areas where habitat protection can be supplemented with migration corridors.”

... more about:
»DNA »USGS »populations »species »subspecies »turtles

Agencies often maintain migration corridors to help wildlife continue to breed based on their historic patterns. These are areas where habitat restoration, regulatory policies, or other means are used to ensure animals can pass safely between two or more prime areas of habitat. Well-placed corridors could maintain the terrapins’ existing natural diversity and keep their overall population numbers robust, explained Hart.

“Diversity loss can be a silent threat to many species,” explained Maggie Hunter, a USGS research geneticist and co-author of the study. “The threat to long-term survival of terrapins occurs if they become separated into isolated groups. Isolation can affect their overall survival several generations down the line.”

 To support a healthy mix of genetic diversity, however, managers must first understand the existing genetic variation.

“Healthy interbreeding doesn’t mean that turtles from Maine have to interbreed with those from Texas,” explained Hunter. “Once managers know where ‘natural breaks’ in populations occur, they can focus on keeping terrapin populations healthy by enabling reproduction within each of those distinct groups.”

To identify those natural genetic breaks, Hart teamed up with Hunter and USGS research geneticist Tim King to study their breeding patterns using DNA from the blood samples of nearly a thousand terrapins. Based on their variation in 12 genetic markers -- strands of DNA that King had decoded for comparative purposes -- the terrapins were assigned into genetically similar groups.

They found only 4 genetically distinct populations, which came as a surprise, given there are 7 recognized terrapin subspecies. This means the ‘natural breaks’ in breeding don’t correspond to the ranges of those subspecies.

The results of the genetic study offer one more benefit. During the 1920s, terrapins were considered a delicacy and hunted for their meat, and they still occasionally turn up as food in markets around the country. Now, wildlife agencies can use a DNA test to determine where these turtles came from, so they can return rescued turtles back to their original habitat.

The study, “Regional differentiation among populations of the Diamondback terrapin (Malaclemys terrapin)” was recently published in the journal Conservation Genetics

Rachel Pawlitz | Eurek Alert!
Further information:

Further reports about: DNA USGS populations species subspecies turtles

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>