Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groovy Turtles’ Genes to Aid in Their Rescue

06.05.2014

The diverse patterns on the diamondback terrapins’ intricately grooved shell may be their claim to fame, but a newly published U.S. Geological Survey study of the genetic variation underneath their shell holds one key to rescuing these coastal turtles.

Listed as an endangered species in Rhode Island and deemed threatened in Massachusetts, the terrapin is the only turtle in North America that spends its entire life in coastal marshes and mangroves. Seven different subspecies of terrapins are currently recognized by scientists based on external traits, such as their skin color and the shape of their shells. Each subspecies occupies a strip of the eastern seaboard or Gulf of Mexico coastline, from as far north as Massachusetts to as far west as Texas.

Many of the coastal states where terrapins are found have designated it a species of special concern, and the states are looking to address the issues the terrapins face due to fragmentation of their coastal habitats. An increasingly patchy swath of isolated coastal marshes makes it harder for terrapins to find each other and continue interbreeding as they have in the past.

“Before now, it was not clear how terrapin genetics varied across the range,” said Kristen Hart, a USGS research ecologist and lead author of the study. “Understanding this variation across the landscape helps land managers develop conservation plans. For example, they may pinpoint areas where habitat protection can be supplemented with migration corridors.”

... more about:
»DNA »USGS »populations »species »subspecies »turtles

Agencies often maintain migration corridors to help wildlife continue to breed based on their historic patterns. These are areas where habitat restoration, regulatory policies, or other means are used to ensure animals can pass safely between two or more prime areas of habitat. Well-placed corridors could maintain the terrapins’ existing natural diversity and keep their overall population numbers robust, explained Hart.

“Diversity loss can be a silent threat to many species,” explained Maggie Hunter, a USGS research geneticist and co-author of the study. “The threat to long-term survival of terrapins occurs if they become separated into isolated groups. Isolation can affect their overall survival several generations down the line.”

 To support a healthy mix of genetic diversity, however, managers must first understand the existing genetic variation.

“Healthy interbreeding doesn’t mean that turtles from Maine have to interbreed with those from Texas,” explained Hunter. “Once managers know where ‘natural breaks’ in populations occur, they can focus on keeping terrapin populations healthy by enabling reproduction within each of those distinct groups.”

To identify those natural genetic breaks, Hart teamed up with Hunter and USGS research geneticist Tim King to study their breeding patterns using DNA from the blood samples of nearly a thousand terrapins. Based on their variation in 12 genetic markers -- strands of DNA that King had decoded for comparative purposes -- the terrapins were assigned into genetically similar groups.

They found only 4 genetically distinct populations, which came as a surprise, given there are 7 recognized terrapin subspecies. This means the ‘natural breaks’ in breeding don’t correspond to the ranges of those subspecies.

The results of the genetic study offer one more benefit. During the 1920s, terrapins were considered a delicacy and hunted for their meat, and they still occasionally turn up as food in markets around the country. Now, wildlife agencies can use a DNA test to determine where these turtles came from, so they can return rescued turtles back to their original habitat.

The study, “Regional differentiation among populations of the Diamondback terrapin (Malaclemys terrapin)” was recently published in the journal Conservation Genetics

Rachel Pawlitz | Eurek Alert!
Further information:
http://www.usgs.gov/newsroom/article_pf.asp?ID=3881

Further reports about: DNA USGS populations species subspecies turtles

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>