Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Green Machine: Algae Clean Wastewater, Convert to Biodiesel

18.02.2011
RIT researchers take algae out of the lab

Let algae do the dirty work.

Researchers at Rochester Institute of Technology are developing biodiesel from microalgae grown in wastewater. The project is doubly “green” because algae consume nitrates and phosphates and reduce bacteria and toxins in the water. The end result: clean wastewater and stock for a promising biofuel.

The purified wastewater can be channeled back into receiving bodies of water at treatment plants, while the biodiesel can fuel buses, construction vehicles and farm equipment. Algae could replace diesel’s telltale black puffs of exhaust with cleaner emissions low in the sulfur and particulates that accompany fossil fuels.

Algae have a lot of advantages. They are cheaper and faster to grow than corn, which requires nutrient-rich soil, fertilizer and insecticide. Factor in the fuel used to harvest and transport corn and ethanol starts to look complicated.

In contrast, algae are much simpler organisms. They use photosynthesis to convert sunlight into energy. They need only water—ponds or tanks to grow in—sunlight and carbon dioxide.

“Algae—as a renewable feedstock—grow a lot quicker than crops of corn or soybeans,” says Eric Lannan, who is working on his master’s degree in mechanical engineering at RIT. “We can start a new batch of algae about every seven days. It’s a more continuous source that could offset 50 percent of our total gas use for equipment that uses diesel.”

Cold weather is an issue for biodiesel fuels.

“The one big drawback is that biodiesel does freeze at a higher temperature,” says Jeff Lodge, associate professor of biological sciences at RIT. “It doesn’t matter what kind of diesel fuel you have, if it gets too cold, the engine’s not starting. It gels up. It’s possible to blend various types of biodiesel—algae derived with soybeans or some other type—to generate a biodiesel with a more favorable pour point that flows easily.”

Lannan’s graduate research in biofuels led him to Lodge’s biology lab. With the help of chemistry major Emily Young, they isolated and extracted valuable fats, or lipids, algae produce and yielded tiny amounts of a golden-colored biodiesel. They are growing the alga strain Scenedesmus, a single-cell organism, using wastewater from the Frank E. Van Lare Wastewater Treatment Plant in Irondequoit, N.Y.

“It’s key to what we’re doing here,” Lodge says. “Algae will take out all the ammonia—99 percent—88 percent of the nitrate and 99 percent of the phosphate from the wastewater — all those nutrients you worry about dumping into the receiving water. In three to five days, pathogens are gone. We’ve got data to show that the coliform counts are dramatically reduced below the level that’s allowed to go out into Lake Ontario.”

Assemblyman Joseph Morelle, whose district includes Irondequoit, applauds RIT’s initiative. “Innovations developed at great academic institutions such as RIT will be key to solving many of the challenges we face, from revitalizing the upstate economy to the creation of clean, renewable energy sources for the future. Professor Lodge and Eric Lannan’s research bridges the gap between cost efficiency and environmental conservation and is a perfect example of how old problems can yield to new and creative solutions.”

Lodge and Lannan ramped up their algae production from 30 gallons of wastewater in a lab at RIT to 100 gallons in a 4-foot-by-7-foot long tank at Environmental Energy Technologies, an RIT spinoff. Lannan’s graduate thesis advisor Ali Ogut, professor of mechanical engineering, is the company’s president and CTO. In the spring, the researchers will build a mobile greenhouse at the Irondequoit wastewater treatment plant and scale up production to as much as 1,000 gallons of wastewater.

Northern Biodiesel, located in Wayne County, will purify the lipids from the algae and convert them into biodiesel for the RIT researchers.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>