Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Great ape genetic diversity catalog frames primate evolution and future conservation

04.07.2013
A model of great ape history over the past 15 million years has been fashioned through the study of genetic variation in a large panel of humans, chimpanzees, gorillas and orangutans

A model of great ape history over the past 15 million years has been fashioned through the study of genetic variation in a large panel of humans, chimpanzees, gorillas and orangutans.

The catalog of great ape genetic diversity, the most comprehensive ever, elucidates the evolution and population histories of great apes from Africa and Indonesia. The resource will likely also aid in current and future conservation efforts which strive to preserve natural genetic diversity in populations.

More than 75 scientists and wildlife conservationists from around the world assisted the genetic analysis of 79 wild and captive-born great apes. They represent all six great ape species: chimpanzee, bonobo, Sumatran orangutan, Bornean orangutan, eastern gorilla, and western lowland gorilla, and seven subspecies. Nine human genomes were included in the sampling.

Javier Prado-Martinez, working with Tomas Marques-Bonet at the Universitat Pompeu Fabra in Barcelona, Spain, and Peter H. Sudmant, with Evan Eichler at the University of Washington in Seattle, led the project. The report appears today, July 3, in the journal Nature.

"The research provided us the deepest survey to date of great ape genetic diversity with evolutionary insights into the divergence and emergence of great-ape species," noted Eichler, a UW professor of genome sciences and a Howard Hughes Medical Institute Investigator.

Genetic variation among great apes had been largeley uncharted, due to the difficuty in obtaining genetic specimens from wild apes.

Conservationists in many countries, some of them in dangerous or isolated locations, helped in this recent effort, and the research team credits them for the success of the project.

Sudmant, a UW graduate student in genome sciences, said, "Gathering this data is critical to understanding differences between great ape species, and separating aspects of the genetic code that distinguish humans from other primates." Analysis of great ape genetic diversity is likely to reveal ways that natural selection, population growth and collapse, geographic isolation and migration, climate and geological changes, and other factors shaped primate evolution.

Sudmant added that learning more about great ape genetic diversity also contributes to knowledge about disease susceptibility among various primate species. Such questions are important to both conservation efforts and to human health. The ebola virus is responsible for thousands of gorilla and chimpanzee deaths in Africa and the origin of HIV, the virus which causes AIDs, is SIV, simian immunodeficiency virus.

Sudmant works in a lab that studies both primate evolutionary biology and neuropsychiatric diseases such as autism, schizophrenia, developmental delay, and cognitive and behavioral disorders.

"Because the way we think, communicate and act is what makes us distinctively human," Sudmant said, "we are specifically looking for the genetic differences between humans and other great apes that might confer these traits." Those species differences may direct researchers to portions of the human genome associated with cognition, speech or behavior, providing clues to which mutations might underlie neurological disease.

In a companion paper published this week in Genome Research, Sudmant and Eichler wrote that they inadvertently found the first genetic evidence in a chimpanzee of a disorder resembling Smith-Magenis syndrome, a disabling physical, mental and behavioral condition in humans. Strikingly, the veterinary records of this chimpanzee named Suzie-A, matched almost exactly to the symptoms of human Smith Magenis patients; she was overweight, rage-prone, had a curved-spine chimp and died from kidney failure.

The discovery came about while researchers were exploring and comparing the accumulation of copy number variants during great ape evolution. Copy number variants are differences between individuals, populations or species in the number of times specific segments of DNA appear. Duplication and deletion of DNA segments have re-structured the genomes of humans and great apes , and are behind many genetic diseases.

In addition to offering a view of the origins of humans and their disorders, the new resource of ape genetic diversity will help address the challenging plight of great ape species on the brink extinction. The resource provides an important tool to enable biologists to identify the origin of great apes poached for their body parts or hunted down for bush meat. The research also explains why current zoo breeding programs, which have attempted to increase the genetic diversity of captive great ape populations, have resulted in captive ape populations that are genetically dissimilar to their wild counterparts.

"By avoiding inbreeding to produce a diverse population, zoos and conservation groups may be entirely eroding genetic signals specific to certain populations in specific geographic locations in the wild," Sudmant said. One of the captive-bred apes studied by the researchers, Donald, had the genetic makeup of two distinct chimpanzee subspecies, located about 2,000 kilometers away from each other in the wild.

The research also delineates the many changes that occurred along each of the ape lineages as they became separated from each other through migration, geological change and climate events. The formation of rivers, the partition of islands from the mainland, and other natural disturbances have all served to isolate groups of apes. Isolated populations may then be exposed to a unique set of environmental pressures, resulting in population fluctuations and adaptations depending on the circumstances.

Even though early human-like species were present at the same time as the ancestors of some present day great apes, the researchers found that the evolutionary history of ancestral great ape populations was far more complex than that of humans. Compared to our closest relatives, chimpanzees, human history appears "almost boring" conclude Sudmant and his mentor Evan Eicher. The last few million years of chimpanzee evolutionary history are fraught with population explosions followed by implosions demonstrating remarkable plasticity. The reasons for these fluctuations in chimpanzee population size long before our own population explosion are still unknown however.

Sudmant said his interest in studying the great apes, and wanting to preserve great ape species, stems from the similarity of great apes to humans and their curiosity about us.

"If you look at a chimpanzee or a gorilla, those guys will look right back at you," he said, "They act just like us. We need to find ways to protect these precious species from extinction."

The two Univerity of Washington studies, Great ape genetic diversity and population history, published in Nature and, Evolution and diversity of copy number variation in the great ape lineage, published in Genome Research, are funded by NIH grant HG002385 and support from the Howard Hughes Medical Institute. Peter Sudmant is a Howard Hughes Medical Institute International Student Fellow.

Leila Gray | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>