Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming threatens Australia's iconic kangaroos

16.10.2008
1 species faces possible extinction this century

As concerns about the effects of global warming continue to mount, a new study published in the December issue of Physiological and Biochemical Zoology finds that an increase in average temperature of only two degrees Celsius could have a devastating effect on populations of Australia's iconic kangaroos.

"Our study provides evidence that climate change has the capacity to cause large-scale range contractions, and the possible extinction of one macropodid (kangaroo) species in northern Australia," write study authors Euan G. Ritchie and Elizabeth E. Bolitho of James Cook University in Australia.

Ritchie and Bolitho used computer modeling and three years of field observations to predict how temperature changes that are considered to be likely over the next half-century might affect four species of kangaroos. They found that a temperature increase as small as a half-degree Celsius may shrink kangaroos' geographic ranges. An increase of two degrees may shrink kangaroos' ranges by 48 percent. A six-degree increase might shrink ranges by 96 percent.

Ritchie says that generally accepted climate models predict temperatures in northern Australia to be between 0.4 and two degrees warmer by 2030, and between two and six degrees warmer by 2070.

The most significant effects of climate change are not necessarily on the animals themselves, but on their habitats—specifically, in amounts of available water. This is particularly true in Northern Australia, says Ritchie.

"If dry seasons are to become hotter and rainfall events more unpredictable, habitats may become depleted of available pasture for grazing and waterholes may dry up," the authors write. "This may result in starvation and failed reproduction … or possible death due to dehydration for those species that are less mobile."

And although kangaroo species may be mobile enough to relocate as the climate changes, the vegetation and topography for which they are adapted are unlikely to shift at the same pace.

The antilopine wallaroo, a kangaroo species adapted for a wet, tropical climate, faces the greatest potential risk. Ritchie and Bolitho found that a two-degree temperature increase may shrink its range by 89 percent. A six-degree increase may lead to the extinction of antilopine wallaroos if they are unable to adapt to the arid grassland that such a temperature change is likely to produce.

"Large macropodids are highly valuable economically, through both ecotourism and a commercial meat trade, and many species are an important food source for indigenous people," they write. "Therefore, it is critically important that we understand the ecology of Australia's native herbivores to ensure any further economic development will occur in an environmentally sustainable way."

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>