Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming threatens Australia's iconic kangaroos

16.10.2008
1 species faces possible extinction this century

As concerns about the effects of global warming continue to mount, a new study published in the December issue of Physiological and Biochemical Zoology finds that an increase in average temperature of only two degrees Celsius could have a devastating effect on populations of Australia's iconic kangaroos.

"Our study provides evidence that climate change has the capacity to cause large-scale range contractions, and the possible extinction of one macropodid (kangaroo) species in northern Australia," write study authors Euan G. Ritchie and Elizabeth E. Bolitho of James Cook University in Australia.

Ritchie and Bolitho used computer modeling and three years of field observations to predict how temperature changes that are considered to be likely over the next half-century might affect four species of kangaroos. They found that a temperature increase as small as a half-degree Celsius may shrink kangaroos' geographic ranges. An increase of two degrees may shrink kangaroos' ranges by 48 percent. A six-degree increase might shrink ranges by 96 percent.

Ritchie says that generally accepted climate models predict temperatures in northern Australia to be between 0.4 and two degrees warmer by 2030, and between two and six degrees warmer by 2070.

The most significant effects of climate change are not necessarily on the animals themselves, but on their habitats—specifically, in amounts of available water. This is particularly true in Northern Australia, says Ritchie.

"If dry seasons are to become hotter and rainfall events more unpredictable, habitats may become depleted of available pasture for grazing and waterholes may dry up," the authors write. "This may result in starvation and failed reproduction … or possible death due to dehydration for those species that are less mobile."

And although kangaroo species may be mobile enough to relocate as the climate changes, the vegetation and topography for which they are adapted are unlikely to shift at the same pace.

The antilopine wallaroo, a kangaroo species adapted for a wet, tropical climate, faces the greatest potential risk. Ritchie and Bolitho found that a two-degree temperature increase may shrink its range by 89 percent. A six-degree increase may lead to the extinction of antilopine wallaroos if they are unable to adapt to the arid grassland that such a temperature change is likely to produce.

"Large macropodids are highly valuable economically, through both ecotourism and a commercial meat trade, and many species are an important food source for indigenous people," they write. "Therefore, it is critically important that we understand the ecology of Australia's native herbivores to ensure any further economic development will occur in an environmentally sustainable way."

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>