Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Warming Slows Coral Growth in Red Sea

16.07.2010
In a pioneering use of computed tomography (CT) scans, scientists at Woods Hole Oceanographic Institution (WHOI) have discovered that carbon dioxide (CO2)-induced global warming is in the process of killing off a major coral species in the Red Sea.

As summer sea surface temperatures have remained about 1.5 degrees Celsius above ambient over the last 10 years, growth of the coral, Diploastrea heliopora, has declined by 30% and “could cease growing altogether by 2070” or sooner, they report in the July 16 issue of the journal Science.

“The warming in the Red Sea and the resultant decline in the health of this coral is a clear regional impact of global warming,” said Neal E. Cantin, a WHOI postdoctoral investigator and co-lead researcher on the project. In the 1980s, he said, “the average summer [water] temperatures were below 30 degrees Celsius. In 2008 they were approaching 31 degrees.”

Cantin and WHOI Research Specialist Anne L. Cohen, the other lead investigator, said the findings were unexpected because D. heliopora did not exhibit one of the typical signs of thermal stress: bleaching. “These corals looked healthy,” said Cohen.

But CT scanning of the coral's skeletal structure in the laboratory revealed “the secrets that the skeletons are hiding,” she said. “The CT scans reveal that these corals have actually been under chronic stress for the last 10 years, and that the rates of growth were the lowest in 2008,” the final year of the study.

The other WHOI researchers who participated in the study are climate dynamicist Kristopher B. Karnauskas, coral biologist Ann M. Tarrant and chemical oceanographer Daniel C. McCorkle.

Cohen and WHOI graduate student Casey Saenger had previously used CT scanning to quantify skeletal growth in Atlantic corals, but she credits Cantin with “pioneering” the technique for this type of oceanographic research. “He really took it to another level,” she said. “What Neal really did was to adapt the imaging software, previously developed for bodies, specifically for our coral needs. This was an excruciatingly difficult task but it certainly paid off. We could not have used conventional techniques on this coral. The skeletal architecture is too complicated.”

Historically, scientists have used x-rays to examine coral skeletons, which display annual growth bands much like tree rings, Cantin explained. But that method usually entails cutting into the skeleton, he said. CT allows non-invasive 3-D observation of the skeletons and bands.

“The biggest advantage we have over x ray is that we can scan intact cores without cutting the core into thin slices,” said Cantin. “Since corals do not grow in a straight line, when the core is cut, inevitably the growth axis will be lost from a thin cut. Maintaining the vertical growth axis is crucial for us to visualize the annual density banding patterns.

“With CT scanning we are able to work with a complete 3-D reconstruction of the entire core. We can then make digital slices from the core, as many times as we need to in order to continually visualize the annual density bands. CT scanning is the evolution of x-ray.”

With CT, adds Cohen, “We have a 3-D visualization of the skeleton from which we can make ‘virtual’ cuts on the computer that have the exact thickness, orientation and location that we need for a particular coral to get the most precise measurements. X-ray requires that we cut the core ‘blind’ beforehand, before we know what the orientation of growth is. Whole cores can be sacrificed this way. With CAT scanning, our cores are imaged intact, nothing else is required. This is a huge leap forward over x-ray.”

Like MDs diagnosing a sick patient, the researchers scanned six skeletal cores of D. heliopora and were able to pinpoint two high-density growth bands, indicating high thermal stress in 1998 and 2001. This correlates with an abrupt drop in skeletal growth after 1998, which has continued steadily since then.

The corals are building skeleton, or calcifying, at a progressively slower rate because they are losing symbiotic algae that live in the coral tissue. By performing photosynthesis, the algae provide the fuel for the corals to make new skeleton.

But, says Cohen, “when the corals are thermally stressed, they lose algae and many will eventually starve and die. When corals lose enough algae, they actually turn white, and that’s what bleaching is. We think these corals are on their way to bleaching.”

It was the CT technique that enabled early detection of the problem. “The corals look healthy, but looking inside at the skeleton gives you an idea of things to come,” she said. “It’s like osteoporosis. You look at a person and, on the outside, everything seems fine, but inside there are signs of trouble.

The same corals had a similar reaction to a “warm event” in 1941-42 but recovered within three years as the ocean cooled. The recovery was possible because that warming episode was probably triggered by El Nino, a natural, short-term climate anomaly.

In contrast, the current warming trend—which Cantin says has been going on since 1980--“is due to human-induced climate change,” he says, and appears unlikely to be slowed or reversed before coral health deteriorates further. Climate models from the Intergovernmental Panel on Climate Change (IPCC) predict that “summer temperatures in the central Red Sea will continue to rise as atmospheric CO2 concentration rises through the 21st century,” the WHOI researchers report in Science.

Co-author Karnauskas concurs that there is little doubt that the Red Sea phenomenon is attributable to long-term climate change. “El Nino events typically last about one year, and in a few rare cases last for two years.,” he says. “El Nino--and its ‘cold’ counterpart, La Nina--are quite well known with a very distinct signature in the Pacific Ocean, where they originate. El Nino and La Nina events have been occurring for millions of years, and the past few decades have been no exception.

“Therefore, there is no way El Nino could account for a ‘trend’ that persists for decades. These are simply superimposed upon the human/CO2-induced warming trend. There is probably nobody in the scientific community who would argue the rising temperatures in the Red Sea are related to El Nino. So, in the past few decades, the Red Sea temperature has been going up just like the global mean temperature, and the corals are suffering accordingly.”

The IPCC models forecast another 2.5-3-degree C rise in Red Sea temperature by the end of the 21st century. But the authors project that D. heliopora will cease calcifying altogether by 2070, when the models predict that temperatures will reach 1.85 degrees C higher than they are now.

Even that “is probably a conservative estimate,” they say. Cohen suggests the end for this species of Red Sea coral may come as early as 2050.

The scientists point out that the results show that, at least in this case, the culprit is sea surface temperatures and not ocean acidification, another effect of CO2 emissions that has become an increasing concern for scientists.

“We were able to pinpoint temperature as the driver of the declining growth rates because we have long records of skeletal growth going back to around 1930,” Cohen said, “and we were able to correlate skeletal growth with temperature records that span the same time period. We were also able to rule out ocean acidification because we have actual measurements of the aragonite saturation state of seawater--a measure of acidity--at our study sites.

She cautions against drawing conclusions about other coral species based on these results. “This study reports the impact of rising temperature on one coral species,” she says. “It’s an important reef-building coral in the Red Sea, but there are about 250 species of stony corals in this region and we have no idea what the other species are doing. Some might be doing much worse; some might be doing a little better in terms of thermal tolerances. We need much more of this type of work to be able to predict what the coral reefs will look like over the next few decades.”

These corals, Cantin says, have demonstrated that they are capable of recovering from the transient high-temperature event in the early 1940s. "However" he says, “"this species [in this study] has not [recovered] from the last decade of global warming.”

On a long-term scale, he says, “This [CT] technique allows us to assess reef recovery rates without monitoring that reef for 30 years. We can establish an ecological baseline of coral growth for as far back as the corals lived. We can assess this coral colony’s physiological performance back through time.”

But now, for D. heliopora, the outlook appears bleak. “The data in hand suggest that without immediate, aggressive global intervention to reduce carbon emissions,” they conclude in their report, “the pressures of predicted annual heat stress will most certainly result in further deterioration of coral health in the central Red Sea over the next century.”

The work was funded by King Abdullah University of Science and Technology.


The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment.

Joel Greenberg | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>