Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming’s biggest offenders

The U.S. and China are among the 7 countries most accountable for the world’s temperature increase, according to a new Concordia study

When it comes to global warming, there are seven big contributors: the United States, China, Russia, Brazil, India, Germany and the United Kingdom. A new study published in Environmental Research Letters reveals that these countries were collectively responsible for more than 60 per cent of pre-2005 global warming. Uniquely, it also assigns a temperature change value to each country that reflects its contribution to observed global warming.

The study was conducted at Concordia under the leadership of Damon Matthews, an associate professor in the Department of Geography, Planning and Environment. In a straight ranking, the U.S. is an unambiguous leader, responsible for a global temperature increase of 0.15 C. That’s close to 20 per cent of the observed warming.

China and Russia account for around eight per cent each; Brazil and India seven per cent; and Germany and the U.K. around five per cent each. Canada comes in in 10th place, just after France and Indonesia. Although it may seem surprising that less industrialized countries, including Brazil and Indonesia, ranked so highly, their positions reflect carbon dioxide emissions related to deforestation.

In the study, the research team used a new methodology to calculate national contributions to global warming. It weighted each type of emission according to the atmospheric lifetime of the temperature change it caused. Using data from 1750 onward, the team accounted for carbon dioxide contributions from fossil fuel burning and land-use change, along with methane, nitrous oxide and sulphate aerosol emissions.

Matthews and his colleagues also experimented with scaling the emissions to the size of the corresponding area. Western Europe, the U.S., Japan and India are hugely expanded, reflecting emissions much greater than would be expected based on their geographic area. Russia, China and Brazil stay the same. Taken in this light, the climate contributions of Brazil and China don’t seem so out of line — they are perfectly in proportion with the countries’ landmasses. Of course, Canada and Australia become stick thin, being countries whose geography is much larger than their share of the global warming pie.

Meanwhile, dividing each country’s climate contribution by its population paints a different picture. Amongst the 20 largest total emitters, developed countries occupy the top seven per-capita positions, with Canada falling in third place behind the U.K. and the United States. And in this ranking, China and India drop to the bottom of the list.

Matthews’s study highlights how much individual countries have contributed to the climate problem, as well as the huge disparity between rich and poor with respect to per-person contributions to global warming. Acknowledging these disparities, and then moving to correct them, may be a fundamental requirement for success in efforts to decrease global greenhouse-gas emissions.

NB - Parts of this text appear courtesy of New Scientist magazine.

Cléa Desjardins
Senior Advisor
Media Relations
514-848-2424 ext. 5068

Clea Desjardins | EurekAlert!
Further information:

Further reports about: carbon dioxide gas emission global warming temperature change

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>