Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may reroute evolution

17.02.2011
Rising carbon dioxide levels associated with global warming may affect interactions between plants and the insects that eat them, altering the course of plant evolution, research at the University of Michigan suggests.
The research focused on the effects of elevated carbon dioxide on common milkweed, Asclepias syriaca. Milkweed is one of many plants that produce toxic or bitter chemical compounds to protect themselves from being eaten by insects. These chemical defenses are the result of a long history of interactions between the plants and insects such as monarch caterpillars that feed on them.

Plant defenses—and insect eating patterns—also respond to environmental factors such as rising carbon dioxide. This suggests that elevated carbon dioxide could affect plant evolution by altering the "selection pressure" that plant-eating insects exert on plants.

Selection pressure, the driving force of evolution, induces changes in the genetic composition of a population. It works like this: if insects inflict too much damage on plants, the plants can't reproduce as successfully. This sets up a situation in which any plants that, by chance, have inherited insect-deterring traits are at an advantage. Because of that advantage, such traits are likely to spread through the population, urged on by "pressure" from the insects.

Researchers Rachel Vannette and Mark Hunter investigated whether different genetic "families" of the common milkweed from a single population in Northern Michigan would respond differently to increasing carbon dioxide levels in the atmosphere and if so, how those responses might affect the plants' chances of being eaten by insects.

"Specifically, we examined the response of milkweed plants to elevated carbon dioxide in terms of plant growth, asexual reproduction, and the production of chemical and physical defenses," Vannette said. Although all plants grew larger in response to elevated carbon dioxide, and all plant families showed similar growth and reproductive responses, plant families responded differently to elevated carbon dioxide in their production of chemical and physical defenses against plant-eating insects.

In particular, their production of heart poisons called cardenolides differed. While some plant families responded to elevated carbon dioxide by increasing cardenolide production, most decreased production—by as much as 50 percent.

"That's a big difference if you're a caterpillar," said Vannette, who is a graduate student in Hunter's research group. Hunter is the Henry A. Gleason Collegiate Professor of Ecology and Evolutionary Biology. Because the insects that consume milkweed, including monarch caterpillars, choose their host plants carefully and select specific plants based on the plants' concentration of toxic compounds, these specialist insects can act as agents of selection on milkweed plants.

Countering the shift away from chemical defenses was a shift toward physical defenses and resistance. "The plants had tougher leaves, and they were better at tolerating herbivory by caterpillars—they grew back faster," Vannette said.

Taken together, the results provide evidence that in response to elevated carbon dioxide, genetically-based differences in plant defense mechanisms and the changing plant-insect interactions that result may influence how plants adapt to changing climate.

Will the plants' changing defense strategies help or hinder monarchs?

"We don't know yet," Vannette said, "but that's a question we're investigating."

The findings appear in the March issue of Global Change Biology.

Conducted at the U-M Biological Station near Pellston, Michigan, the research was funded by the National Science Foundation.

U-M Sustainability fosters a more sustainable world through collaborations across campus and beyond aimed at educating students, generating new knowledge, and minimizing our environmental footprint. Learn more at sustainability.umich.edu

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://ns.umich.edu/htdocs/releases/story.php?id=8268
http://www.umich.edu

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>