Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Global warming harms lakes

Global warming also affects lakes. Based on the example of Lake Zurich, researchers from the University of Zurich demonstrate that there is insufficient water turnover in the lake during the winter and harmful Burgundy blood algae are increasingly thriving. The warmer temperatures are thus compromising the successful lake clean-ups of recent decades.
Many large lakes in Central Europe became heavily overfertilized in the twentieth century through sewage. As a result, algal blooms developed and cyanobacteria (photosynthetic bacteria) especially began to appear en masse. Some of these organisms form toxins that can compromise the use of the lake water. Dying algal blooms consume a lot of oxygen, thereby reducing the oxygen content in the lake with negative consequences for the fish stocks.

The problem with overfertilization was not merely the absolute amount of oxygen and phosphorus, the two most important nutrients for algae. Mankind has also changed the ratio between the two nutrients: The phosphorus load in lakes has been reduced vastly in recent decades, yet pollution with nitrogen compounds has not decreased on the same scale. The current ratio between the nutrients can thus trigger a mass appearance of certain cyanobacteria, even in lakes that have been deemed “restored”.

Burgundy blood algae grow more rapidly
"The problem today is that mankind is changing two sensitive lake properties at the same time, namely the nutrient ratios and, with global warming, water temperature,” explains Thomas Posch, a limnologist from the University of Zurich. In collaboration with Zurich Water Supply, he analyzed 40 years’ worth of data in a study that has just been published in Nature Climate Change.

The evaluation of this historical data on Lake Zurich reveals that the cyanobacteria Planktothrix rubescens, more commonly known as Burgundy blood algae, has developed increasingly denser blooms in the last 40 years. Like many other cyanobacteria, Planktothrix contains toxins to protect itself from being eaten by small crabs. Burgundy blood algae were first described in Lake Zurich in 1899 and are a well-known phenomenon for Zurich Water Supply. Consequently, the lake water is painstakingly treated for the drinking-water supply to remove the organism and toxins completely from the raw water.

Warmer lakes have insufficient water turnover
But why does Planktothrix increasingly thrive? The most important natural control of the cyanobacteria blooms occurs in the spring, once the entire lake has cooled down vastly during the winter. Intensive winds trigger the turnover of the surface and deep water. If the turnover is complete, many cyanobacteria die off in the deep waters of Lake Zurich as they cannot withstand the high pressure, which is still 13 bars at depths of 130 meters. Another positive effect of this turnover is the transportation of fresh oxygen to the deep. However, the situation in Lake Zurich has also changed drastically in the last four decades. Global warming causes rising temperatures at the water surface. The current values are between 0.6 and 1.2 degrees Celsius above the 40-year average. The winters were increasingly too warm and the lake water was not able to turn over fully as the temperature difference between the surface and depths posed a physical barrier. The consequences are larger oxygen deficits for a longer period in the lake’s deep water and an insufficient reduction of the Burgundy blood algae blooms.

The cyanobacteria Planktothrix rubescens (Burgundy blood algae) in Lake Zurich. The threads are only 0.005 by two millimeters in size, but primarily form a mass presence at a water depth of 12 to 15 meters. (picture: Limnologische Station, UZH)

In the fall, the body of water already turns over at a depth of between zero and 20 meters and the Planktothrix comes to the surface from depths of 15 meters. It can form visible masses (blooms) at the surface. (picture: Limnologische Station, UZH)

Hope for cold, windy winters

“Unfortunately, we are currently experiencing a paradox. Even though we thought we had partly solved the nutrient problem, in some lakes global warming works against the clean-up measures. Therefore, we primarily need cold winters with strong winds again,” says Posch. As far as the researchers are concerned, the winter of 2011/12 was just what the doctor ordered: The low temperatures and heavy storms allowed the lake to turn over completely and ultimately resulted in a reduction in Planktothrix.

Thomas Posch, Oliver Köster, Michaela M. Salcher und Jakob Pernthaler. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nature Climate Change. 8. Juli 2012.Doi: 10.103

Thomas Posch | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>