Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may delay recovery of stratospheric ozone

05.02.2009
Increasing greenhouse gases could delay, or even postpone indefinitely the recovery of stratospheric ozone in some regions of the Earth, a new study suggests. This change might take a toll on public health.

Darryn W. Waugh, an atmospheric scientist at Johns Hopkins University in Baltimore, and his colleagues report that climate change could provoke variations in the circulation of air in the lower stratosphere in tropical and southern mid-latitudes - a band of the Earth including Australia and Brazil.

The circulation changes would cause ozone levels in these areas never to return to levels that were present before decline began, even after ozone-depleting substances have been wiped out from the atmosphere.

"Global warming causes changes in the speed that the air is transported into and through the lower stratosphere [in tropical and southern mid-latitudes]," says Waugh. "You're moving the air through it quicker, so less ozone gets formed." He and his team present their findings in the Feb. 5 Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

Dan Lubin, an atmospheric scientist who has studied the relationship between ozone depletion and variations in the ultraviolet radiation that reaches the Earth, says Waugh's findings could bode ill for people living in the tropics and southern mid-latitudes.

If ozone levels never return to pre-1960 levels in those regions, "the risk of skin cancer for fair- skinned populations living in countries like Australia and New Zealand, and probably in Chile and Argentina too, will be greater in the 21st century than it was during the 20th century," says Lubin, who is at Scripps Institution of Oceanography in La Jolla, Calif. and did not participate in the research.

Ozone is a gas which is naturally present in the atmosphere and absorbs ultraviolet radiation from the Sun that can harm living beings-for instance, by causing human skin cancer. This protective molecule has been in decline in the stratosphere since the 1970s due to an increase in atmospheric concentrations of human-made substances (mostly chlorofluorocarbon and bromofluorocarbon

compounds) that destroy ozone. Since the late 1980s, most countries have adhered to the Montreal Protocol, an international treaty to phase out production of ozone-depleting substances.

Researchers at NASA Goddard Space Flight Center in Greenbelt, Md. collaborated with Waugh in the new study. The team forecast effects on ozone recovery by means of simulations using a computer model known as the Goddard Earth Observing System Chemistry-Climate Model.

Not all regions face worse prospects for ozone recovery as a result of climate change, the scientists find.

In polar regions and northern mid-latitudes, restoration of ozone in the lower stratosphere will suffer little impact from increasing greenhouse gases, their projections indicate. Indeed, in the upper stratosphere, climate change causes a drop in temperatures that slows down some of the chemical reactions that destroy ozone. So, recovery might be reached in those parts of the atmosphere earlier than forecast, even decades before the removal of ozone-depleting gases.

While scientists have long suspected that climate change might be altering the dynamics of stratospheric ozone recovery, Waugh's team is the first to estimate the effects of increasing greenhouse gases on the recovery of ozone by region.

Waugh says his study will help scientists attribute ozone variations to the right agent.

"Ozone is going to change in response to both ozone-depleting substances and greenhouse gases," he says, "If you don't consider climate change when studying the ozone recovery data, you may get pretty confused."

Title:
"Impacts of climate change on stratospheric ozone recovery"
Authors:
Darryn W. Waugh: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
Luke Oman: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
S. Randy Kawa: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Richard. S. Stolarski: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Steven Pawson: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Anne R. Douglass: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Paul A. Newman: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
J. Eric Nielsen: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Citation:
Waugh, D. W., L. Oman, S. R., Kawa, R. S. Stolarski, S. Pawson, A. R. Douglass, P. A.

Newman, and J. E. Nielsen (2009), Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 36, L03805, doi:10.1029/2008GL036223.

Contact information for author:
Darryn W. Waugh: +1 (410) 516-8344, waugh@jhu.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>