Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming may delay recovery of stratospheric ozone

05.02.2009
Increasing greenhouse gases could delay, or even postpone indefinitely the recovery of stratospheric ozone in some regions of the Earth, a new study suggests. This change might take a toll on public health.

Darryn W. Waugh, an atmospheric scientist at Johns Hopkins University in Baltimore, and his colleagues report that climate change could provoke variations in the circulation of air in the lower stratosphere in tropical and southern mid-latitudes - a band of the Earth including Australia and Brazil.

The circulation changes would cause ozone levels in these areas never to return to levels that were present before decline began, even after ozone-depleting substances have been wiped out from the atmosphere.

"Global warming causes changes in the speed that the air is transported into and through the lower stratosphere [in tropical and southern mid-latitudes]," says Waugh. "You're moving the air through it quicker, so less ozone gets formed." He and his team present their findings in the Feb. 5 Geophysical Research Letters, a publication of the American Geophysical Union (AGU).

Dan Lubin, an atmospheric scientist who has studied the relationship between ozone depletion and variations in the ultraviolet radiation that reaches the Earth, says Waugh's findings could bode ill for people living in the tropics and southern mid-latitudes.

If ozone levels never return to pre-1960 levels in those regions, "the risk of skin cancer for fair- skinned populations living in countries like Australia and New Zealand, and probably in Chile and Argentina too, will be greater in the 21st century than it was during the 20th century," says Lubin, who is at Scripps Institution of Oceanography in La Jolla, Calif. and did not participate in the research.

Ozone is a gas which is naturally present in the atmosphere and absorbs ultraviolet radiation from the Sun that can harm living beings-for instance, by causing human skin cancer. This protective molecule has been in decline in the stratosphere since the 1970s due to an increase in atmospheric concentrations of human-made substances (mostly chlorofluorocarbon and bromofluorocarbon

compounds) that destroy ozone. Since the late 1980s, most countries have adhered to the Montreal Protocol, an international treaty to phase out production of ozone-depleting substances.

Researchers at NASA Goddard Space Flight Center in Greenbelt, Md. collaborated with Waugh in the new study. The team forecast effects on ozone recovery by means of simulations using a computer model known as the Goddard Earth Observing System Chemistry-Climate Model.

Not all regions face worse prospects for ozone recovery as a result of climate change, the scientists find.

In polar regions and northern mid-latitudes, restoration of ozone in the lower stratosphere will suffer little impact from increasing greenhouse gases, their projections indicate. Indeed, in the upper stratosphere, climate change causes a drop in temperatures that slows down some of the chemical reactions that destroy ozone. So, recovery might be reached in those parts of the atmosphere earlier than forecast, even decades before the removal of ozone-depleting gases.

While scientists have long suspected that climate change might be altering the dynamics of stratospheric ozone recovery, Waugh's team is the first to estimate the effects of increasing greenhouse gases on the recovery of ozone by region.

Waugh says his study will help scientists attribute ozone variations to the right agent.

"Ozone is going to change in response to both ozone-depleting substances and greenhouse gases," he says, "If you don't consider climate change when studying the ozone recovery data, you may get pretty confused."

Title:
"Impacts of climate change on stratospheric ozone recovery"
Authors:
Darryn W. Waugh: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
Luke Oman: Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA.
S. Randy Kawa: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Richard. S. Stolarski: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Steven Pawson: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Anne R. Douglass: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Paul A. Newman: Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
J. Eric Nielsen: Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

Citation:
Waugh, D. W., L. Oman, S. R., Kawa, R. S. Stolarski, S. Pawson, A. R. Douglass, P. A.

Newman, and J. E. Nielsen (2009), Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 36, L03805, doi:10.1029/2008GL036223.

Contact information for author:
Darryn W. Waugh: +1 (410) 516-8344, waugh@jhu.edu

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>