Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming's ecosystem double whammy

18.09.2008
DRI study shows 1 abnormally warm year suppresses carbon dioxide uptake for 2 years

Plants and soils act like sponges for atmospheric carbon dioxide, but new research finds that one abnormally warm year can suppress the amount of carbon dioxide taken up by some grassland ecosystems for up to two years. The findings, which followed an unprecedented four-year study of sealed, 12-ton containerized grassland plots at DRI is the cover story in this week's issue (September 18) of the journal Nature.

"This is the first study to quantitatively track the response in carbon dioxide uptake and loss in entire ecosystems during anomalously warm years," said lead author Jay Arnone, research professor in the Division of Earth and Ecosystem sciences at DRI. "The 'lagged' responses that carry over for more than one year are a dramatic reminder of the fragility of ecosystems that are key players in global carbon sequestration."

The plants and soils in ecosystems help modulate the amount of carbon dioxide (CO2) in the atmosphere. Plants need CO2 to survive, and they absorb most CO2 during spring and summer growing seasons, storing the carbon in their leaves, stems and roots. This stored carbon returns to the soil when plants die, and it is released back into the atmosphere when soil bacteria feed on the dead plants and release CO2.

The four-year DRI study involved native Oklahoma tall grass prairie ecosystems that were sealed inside four, living-room-sized environment chambers. The dozen 12-ton, six-foot-deep plots were extracted intact from the University of Oklahoma's prairie research facility near Norman, Okla., in order to minimize the disturbance of plants and soil bacteria. Inside the DRI's sunlit-controlled EcoCELL chambers, scientists replicated the daily and seasonal changes in temperature, and rainfall that occur in the wild.

In the second year of the study, half of the plots were subjected to temperatures typical of a normal year, and the other half were subjected to abnormally warm temperatures -- on the order of those predicted to occur later this century by the Intergovernmental Panel on Climate Change. In the third year of the study, temperatures around the warmed plots were turned down again to match temperatures in the control plots. The CO2 flux -- the amount of carbon dioxide moving between the atmosphere and biosphere -- was tracked in each chamber for all four years of the study.

DRI's EcoCELL facility gave the scientists an unprecedented degree of control over the enclosed ecosystems. Not only could they create the same air temperature conditions from year-to-year, they could also independently control the soil temperature in each chamber -- a key feature that enhanced the ecological relevance of the results. Each containerized ecosystem also sat on "load cells," the type of scales used to weigh trucks on highways. Scientists used the scales to track the amount of water that was taken up and lost by the plants and soil in both normal and abnormal years. Thus, each containerized ecosystem served as a weighing lysimeter, an instrument that's used to measure the water and nutrients that percolate through soils.

The scientists found that ecosystems exposed to an anomalously warm year had a net reduction in CO2 uptake for at least two years. These ecosystems trapped and held about one-third the amount of carbon in those years than did the plots exposed to normal temperatures.

"Large reductions in net CO2 uptake in the warm year were caused mainly by decreased plant productivity resulting from drought, while the lack of complete recovery the following year was caused by a lagged stimulation of CO2 release by soil microorganisms in response to soil moisture conditions," explained co-author Paul Verburg, also from DRI.

Numerous studies have found that the Earth's atmospheric CO2 levels have risen by about one-third since the dawn of the Industrial Age. CO2 helps trap heat in the atmosphere, and political and economic leaders the world over are debating policy and economic reforms to reduce the billions of tons of CO2 that burned fossil fuels are adding to the atmosphere each year.

"Our findings confirm that ecosystems respond to climate change in a much more complex way than one might expect based solely on traditional experiments and observations," said study co-author James Coleman, vice provost for research and professor of ecology and evolutionary biology at Rice University. "Our results provide new information for those who are formulating science-based carbon policies."

Greg Bortolin | EurekAlert!
Further information:
http://www.dri.edu
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>