Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The global impact of climate change on biodiversity

When three undergraduates set off on an expedition in 1965 to trap moths on Mount Kinabalu in Borneo, little did they realise that they were establishing the groundwork for a study of the impacts of climate change.

New research led by the University of York has repeated the survey 42 years later, and found that, on average, species had moved uphill by about 67 metres over the intervening years to cope with changes in climate.

This is the first demonstration that climate change is affecting the distributions of tropical insects, the most numerous group of animals on Earth, thus representing a major threat to global biodiversity.

University of York PhD student I-Ching Chen – first author of the new study – said: “Tropical insects form the most diverse group of animals on Earth but to-date we have not known whether they were responding to climate change. The last Intergovernmental Panel on Climate Change AR4 Report showed a gaping hole in the evidence. Our new study is good in that it increases the evidence available, but it is potentially bad for biodiversity.”

Professor Thomas added: “Large numbers of species are completely confined to tropical mountains, such as Mount Kinabalu: many of the species found by the expeditions have never been found anywhere else on Earth. As these species get pushed uphill towards cooler conditions, the amount of land that is available to them gets smaller and smaller. And because most of the top of the mountain is bare rock, they may not be able to find suitable habitats, even if the temperature is right. Some of the species are likely to die out.”

The New Expedition in 2007 was joined by Henry Barlow, one of the members of the original survey, whose life-long enthusiasm for moths helped I-Ching Chen, who is from Taiwan, to come to terms with the sheer diversity of moths she had to identify.

The study is published in the latest edition of Proceedings of the National Academy of Sciences (PNAS).

Jeremy Holloway, a Research Associate at the Natural History Museum in London, and another member of the 1965 expedition, devoted his career to the identification (taxonomy) of moths from South East Asia, enabling the research team to identify the new samples. Armed with the data from 1965, moth-trapping equipment, tents, sleeping bags and rations, I-Ching and colleagues set out to repeat the original survey.

“Photographs from the 1965 expedition led us back to exactly the same sites sampled 42 years ago”, said Dr Suzan Benedick, expedition member, and Universiti Malaysia Sabah entomologist.

The new survey involved climbing the mountain and catching moths up to an elevation of 3,675 metres above sea level. Once all of the specimens had been caught and identified, then the team compared the heights at which each species had been found in 1965 and again in 2007. The results revealed a highly statistically significant shift, indicating that the moths are now found higher on the mountain than previously.

There is a more positive note, however. As the highest and coolest location between the Himalaya and New Guinea, Mount Kinabalu represents an extremely important “climate change refuge”. Species that begin to find conditions too hot (or dry) in the surrounding lowlands may be able to find suitable conditions by moving upwards on the slopes of this mountain. “The critical thing is to protect the forests surrounding the mountain, so that the lowland species are able to reach the cooler conditions that they may need,” said Dr Jane Hill, expedition member, and one of I-Ching Chen’s advisors.

David Garner | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>