Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global food markets: Climate impacts would be more costly than bioenergy effects

15.01.2014
Ambitious greenhouse-gas mitigation consistent with the 2 degrees target is likely to require substantial amounts of bioenergy as part of the future energy mix.

Though this does not come without risks, global food markets would be affected much more by unmitigated climate change than by an increased bioenergy demand, a study led by scientists from the Potsdam Institute for Climate Impact Research (PIK) now finds.

Agricultural prices could be about 25 percent higher in 2050 through direct climate impacts on crop yields in comparison to a reference scenario without climate change.

By way of contrast, a high bioenergy demand as part of a scenario with ambitious mitigation appears to raise prices only about 5 percent.

The analysis has been published along with two other studies led by PIK in the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in a Special Issue of the journal Agricultural Economics. The results show agriculture to be in the spotlight of climate change, both in terms of its need to adapt to climate impacts and its potential to mitigate global warming. Agricultural production and land-use change contribute about one third to global greenhouse-gas emissions.

First AgMIP study: Second-generation bioenergy to decarbonize the transport sector

“Second-generation bioenergy may become relevant especially in the longer term for reducing carbon emissions – for instance as biofuels in the transport sector, because other technical low-emission options such as electrification are relatively expensive,” lead-author Hermann Lotze-Campen says. Today’s bioenergy production of currently around 40 ExaJoule worldwide is dominated by traditional wood for heating and first-generation transport fuels like ethanol from sugar cane or bio-diesel from oil crops. While first-generation biofuels directly compete with food and feed production, second-generation biofuels have the potential to reduce that competition between food and energy markets and to also reduce production costs.

Global demand for second-generation bioenergy from crop and forest residues, wastes or purpose-grown plants like Miscanthus grass or poplar trees is assumed in the study to rise to about an additional 100 ExaJoule in 2050 (about 15 percent of total primary energy demand), if global warming is supposed to be limited to about 2 degrees above pre-industrial levels. Conducting a comparison between five agro-economic simulations, the study allows for the first time for a tentative conclusion that ambitious climate change mitigation with bioenergy need not drive up global food prices much.

Second AgMIP study: Global warming repercussions increase need for additional cropland

In a comprehensive comparison of ten global agro-economic simulation models, Christoph Schmitz from PIK examined how much cropland will be used under different socioeconomic and climate change scenarios. “We find most models projecting an increase in cropland by 2050 that is more than 50 percent higher in scenarios with unabated climate change than in those assuming a constant climate,” Schmitz says. The increase would be 320 million hectare instead of approximately 200 million hectare – the difference equals roughly three times the size of Germany. Across all simulations, most of the cropland expansion takes place in South America and Sub-Saharan Africa. “Now this could be bad news as in those regions, in order to gain additional cropland, centuries-old rainforests are cut down. This does not only increase carbon emissions but also harms biodiversity and threatens important ecosystem services,” Schmitz explains.

So far projections of future land use have shown widely varying results due to large uncertainties in data and methods. To better understand the differences, the ten leading international modeling teams in this field sat together over a period of two years to learn from each other. The result is this unique multi-model comparison, which allows for more robust assessments and a better understanding of the connections between climate change, land use and agricultural prices.

Third AgMIP study: Effects on crop yields are strong, but vary widely across the globe

Future crop productivity and the role of climate impacts for economic simulations of food markets are at the center of a third study. Using a comparison of computer simulations, the study examines the challenges in quantifying in which regions climate change affects land productivity to which extent. “Potential climate change impacts on crop yields are strong but vary widely across regions and crops,” lead-author Christoph Müller from PIK says.

For the five major crops, i.e. rice, wheat, maize, soybeans and peanuts, the study finds a climate-induced decrease in yields of 10 to 38 percent globally until 2050 in a business-as-usual scenario of rising greenhouse-gas emissions, compared to current conditions. In terms of adaptation, there’s no one-fits-all response. Production could be shifted to regions with lower negative climate impacts; some other regions may profit from an intensification of agriculture. “To be able to cope with the big differences from one region to another, and from one crop to another, a more flexible global agricultural trading system would be needed,” Müller says.

A major step towards more robust assessments of climate impacts on agriculture

There are still considerable uncertainties in future agricultural projections – such as the CO2 fertilization effect, availability of additional agricultural land, or future rates of productivity increase. Yet the AgMIP results are a major step forward towards more robust climate impact assessments for agriculture. “Droughts like the one in 2012 in the United States can have huge impacts on crop production and exports,” Lotze-Campen says. “This illustrates that bad harvests in major production regions, even though limited in scope, can have significant impacts on global agricultural markets, prices and food security. This effect is likely to amplify under unabated climate change.”

Article: Lotze-Campen, H., von Lampe, M., Kyle, P., Fujimori, S., Havlík, P., van Meijl, H., Hasegawa, T., Popp, A., Schmitz, C., Tabeau, A., Valin, H., Willenbockel, D., Wise, M. (2013): Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agricultural Economics (early view/online) [doi:10.1111/agec12092]

Weblink to article: http://onlinelibrary.wiley.com/doi/10.1111/agec.12092/suppinfo

Article: Schmitz, C., van Meijl, H., Kyle, P., Nelson, G.D., Fujimori, S., Gurgel, A., Havlík, P., Heyhoe, E., Mason d'Croz, D., Popp, A., Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe, M., Wise, M., Blanc, E., Hasegawa, T., Kavallari, A., Valin, H. (2013): Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics (early view/online) [doi:10.1111/agec.12090]

Weblink to article: http://onlinelibrary.wiley.com/doi/10.1111/agec.12090/suppinfo

Article: Müller, C., Robertson, R.D. (2013): Projecting future crop productivity for global economic modeling. Agricultural Economics (early view/online) [doi:10.1111/agec.12088]

Weblink to article: http://onlinelibrary.wiley.com/doi/10.1111/agec.12088/suppinfo

About AgMIP: The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. It includes researchers at institutes including the Potsdam Institute for Climate Impacts Research (PIK), the International Food Policy Research Institute (IFPRI) and the International Institute for Applied Systems Analysis (IIASA), among others.

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate
Weitere Informationen:
http://www.agmip.org/ - Weblink to AgMIP
http://www.ifpri.org/ - Weblink to IFPRI
http://www.iiasa.ac.at/ - Weblink to IIASA

Jonas Viering | PIK Pressestelle
Further information:
http://www.pik-potsdam.de

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>