Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic buzzer-beater genes may save fish

University of Oregon's RAD technology opens route to see important genetic markers in rainbow trout

Two distinct populations of rainbow trout -- one in Alaska, the other in Idaho -- share a genetic trait that could have huge implications for fisheries conservation and management, an eight-member research team reports.

The common trait is a similar rapid rate of development that has allowed these different salmomid subspecies to adapt to their native rivers in Alaska and Idaho. The researchers, in a paper put online ahead of publication in the journal Molecular Ecology, say the similarity, a gene variant, resides in a specific portion of their genomes from where this local adaptation is triggered.

Understanding and applying that knowledge could help guide current and future efforts to save species on the brink of extinction and help rejuvenate dwindling populations, especially as changing conditions alter fish environments, says lead author Michael R. Miller, a National Science Foundation-funded doctoral student in the University of Oregon lab of co-author Chris Doe, a UO biologist and Howard Hughes Medical Institute investigator.

The research employed two technologies developed at the UO: the cloning technology pioneered on zebra fish 35 years ago by molecular biologist George Streisinger and a speedy genome-analysis tool known as RAD (restriction-site associated DNA markers). Miller and UO biologist Eric Johnson, with input from William Cresko, also a UO biologist, published their initial RAD-tagging technique in 2005.

The clone lines of rainbow trout used in the study were provided by co-author Gary H. Thorgaard, a fish geneticist at Washington State University. He had worked briefly as a postdoctoral researcher with Streisinger in 1978 to learn about a then-developing zebra-fish cloning technique later detailed in a 1981 Nature paper.

Rainbow trout (Oncorhynchus mykiss) are members of the salmon family. They have a natal homing instinct in which they return to their native streams or rivers to spawn. Occasionally, some end up in other locations and have to adapt, or evolve, to survive in a new habitat. In studying the genetics of populations in the North Fork Clearwater River in north-central Idaho and in the Swanson River of south-central Alaska, researchers noted similar, speedy rates of development -- a conserved trait that generally is not the case in rainbow trout, Thorgaard noted.

"We found that these two very distinct populations are using the same conserved variant of the same gene sequence to achieve this adaptation," Miller said. "We have not identified the exact gene or gene mutations, but we have identified a region of the genome that is very similar."

RAD gene-sequencing technology allowed the researchers to sort through the fish genomes -- rainbow trout populations have between 58 and 64 chromosomes -- until they isolated the gene variants, also known as mutations or alleles. "RAD gives us much better details with a much higher resolution on genetic markers than what we could ever see before," Thorgaard said.

"RAD is being applied widely in the field of fisheries genetics," Miller said. "This technology is having a huge impact on salmon genetics, for conservation, management and restoration."

The findings suggest that the same genetic method of adaptation may be used by other salmonids, which includes salmon, steelhead trout, char, freshwater whitefish and graylings. The gene variant found in the study may have arrived just in time for struggling fish populations, researchers said.

"The study suggests that the same genetic types that are associated with adaptation in one population may also be used by another experiencing similar conditions in another area," Thorgaard said. "This increases our understanding of how adaptation occurs and could help in characterizing populations for conservation purposes."

Potentially, Miller said, matching fish with the same genetic variants could prove beneficial in increasing populations in distressed areas. "Many southern populations, in California, for instance, are already extinct or depressed, and these populations likely contain gene variants that may become important for the future adaptation of more northern populations as the environment changes," he said. "If these populations go extinct, we are potentially hindering the future adaptability of other populations."

Co-authors on the paper with Miller, Doe and Thorgaard were Joseph P. Brunelli and Paul A. Wheeler, both colleagues of Thorgaard at Washington State, and Sixin Liu, Caird E. Rexroad III and Yniv Palti, all of the National Center for Cool and Cold Water Aquaculture, Agricultural Research Service-USDA, in Kearneysville, W.Va.

The National Science Foundation and U.S. Department of Agriculture supported the research.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Jim Barlow, director of science and research communications, 541-346-3481,, and Eric Sorensen, science writer, Washington State University News Service, 509-335-4846,

Sources: Michael R. Miller, UO doctoral student,, and Gary H. Thorgaard, professor of biology, Washington State University in Pullman, 509-335-7438,

Michael Miller page:
Doe Lab:
Gary Thorgaard faculty page:
Audio with Michael Miller:
* Findings:
* The implications:
* Brief summary:

Jim Barlow | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>